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PREFACE

This work is an approach to the asymptotic analysis of classical fields in General
Relativity, a field of research at the intersection between a large variety of 1 mathematics.
The main problem under study can be stated vaguely as follows: given an equation on a
Lorentzian manifold, what can be said « at large times » of the behaviour of a solution,
supposing some initial data?

Over the years, the theory has developed from the relentless study of a handful of
examples and has lead to a number of techniques to formulate mathematically and address
the general problem. One can perhaps quote four predominant domains, the spectral
analysis of self-adjoint operators on Hilbert spaces and extensions thereof, microlocal
analysis, vector field methods and geometric compactifications.

It is of course no surprise that the actual geometry and equation under consideration
condition largely to what extent certains ideas can be applied, and no one formalism, as
of yet, provides any systematic treatment of the general problem. The study of specific
examples is therefore an important part of research in the field. Black-hole geometries
are of particular interest, not only for their physical significance, but also because they
have features that illustrate concrete obstructions to the applications of some of these
techniques. A classical example of this is the phenomenon of super-radiance which prevents
the classical energy functional of a Klein-Gordon field from being positive-definite, thus
complicating the setup for an analytical scattering problem.

The first major project of this thesis was to study the example of Dirac fields on an
extremal black-hole background; the equation under study is the Dirac equation. The
precise black-hole model is that of extreme Kerr-de Sitter, which is a rotating black-
hole in a universe with positive cosmological constant. This model is studied in detail in
Chapter 2. Besides the rotation, the particularity of the extreme model is the coincidence
of two of the so-called horizons. This causes technical difficulties for a scattering theory
due to the appearance of long-range potentials. It is shown in this thesis that one can
formulate the problem as a Schrödinger type equation on a Hilbert space for which one
can identify the asymptotic dynamics and construct an analytical scattering theory; this

1. beautiful and fascinating
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is the object of Chapter 3.
The second major project, discussed in Chapter 4, will take the reader into the realm

of geometric compactifications. In this approach, the idea is to explicitly construct and
append, to the bulk manifold, a geometric boundary that is identified with « infinity ».
Of course, this has to be done in such a way that there is enough compatibility with
the geometric structure of the original manifold so that it is possible to extend objects
defined on the bulk to the boundary. The hope then is that these extensions can be
used to infer information about their asymptotic behaviour. In this work, the emphasis
will be on projective compactifications. We will construct projectively invariant versions
of the Klein-Gordon and Proca equations on so-called projective tractor bundles and
establish results that are parallel to those available for conformally compact manifolds. In
particular, we will show in both cases that there is a natural boundary calculus that leads
to a formal solution operator which produces correctly the dominant asymptotic profiles
on asymptotically de-Sitter manifolds as shown by microlocal techniques.

In the course of this thesis, the author has been introduced to an entirely different
way of thinking about differential geometry than what is taught in most undergraduate
courses. However, the material may not be particularly well known to everyone in the
field. Consequently, the reader will find introductions in Chapters 1 and 4.
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Chapter 1

INTRODUCTION

Although this work is mainly about linear partial differential equations that arise in
physics and their solutions, I have as often as possible endeavoured to see things through
the eyes of a geometer, rather than those of an analyst. In this first chapter, the reader will
find a short introduction to the geometric langage used throughout this text and that may
be unfamiliar to those having dabbled less in geometry. In particular, we discuss the basic
theory of Principal Fibre Bundles and connections. It should be noted that Chapter 3 is
relatively independent from this section, save the short preamble on spinors, as unfortu-
nately the techniques used there have eluded as of yet any geometric understanding on
my part. The present section is nevertheless a pre-requisite for Chapter 4.

Throughout this section, we will work in the category of smooth (C∞) manifolds. In
this context, all maps will be assumed smooth and the terms « smooth » and « differen-
tiable » may be used interchangeably. Unless stated otherwise, until the end of this section,
M will be a smooth manifold of dimension n ∈ N∗. Last of all, the identity element of a
generic group G will be written e.

1.1 Vocabulary and notation

1.1.1 The abstract index notation

For most of the tensor calculus in this text we will make use of Penrose’s abstract index
notation. Here we give a short overview and refer the reader to [PR84] for a thorough
account. The main idea is to keep track of the nature of a tensor by appending indices to
the label that represent its arguments 1. These indices should be understood as distinct
from coordinate indices used in physics literature. More precisely, let E be a vector bundle
over M and Γ(E) the C∞(M)-module of smooth sections of E. We consider isomorphic
copies of the module Γ(E), that we denote by Ea, Eb, . . . . In this way to each X ∈ Γ(E)

1. In finite dimensions, we can think of a tensor as a multilinear form

13



Introduction

there are corresponding elements Xa ∈ Ea, Xb ∈ Eb, . . . The dual modules will be written
Ea, Eb, . . . and a general tensor product Ea1 ⊗ · · · ⊗ Eap ⊗ Eb1 ⊗ · · · ⊗ Ebq : Ea1,...,ap

b1,...,bq
.

Let us now describe how this is used to write out the usual elementary operations of
tensor calculus. As a first example, the tensor product X ⊗ Y of two vector fields will be
written XaY b. We can see now why it was necessary to introduce an infinite number of
modules, one can write: X ⊗X unambiguously XaXb.

Contraction will be indicated by the use of repeated indices as in the following exam-
ples:

- YaXa is the scalar function Y (X),

- if T is a simple tensor:

T = X1 ⊗ · · · ⊗Xj ⊗ · · · ⊗Xp ⊗ Y 1 ⊗ · · · ⊗ Y i · · · ⊗ Y q ∈ Γ(E)⊗p ⊗ Γ(E∗)⊗q,

then the contraction:

Ci
jT = Y i(Xj)X1 ⊗· · ·⊗Xj−1 ⊗Xj+1 ⊗· · ·⊗Xp⊗Y 1 ⊗· · ·⊗Y i−1 ⊗Y i+1 ⊗· · ·⊗Y q,

will be written:

T
a1...ai−1cai+1...an

b1...bj−1cbj+1...bn
= Xa1

1 · · ·Xaj−1
j−1 X

c
jX

aj+1
j+1 · · ·Xap

p Y
1
b1 · · ·Y i−1

bi−1
Y i
c Y

i+1
bi+1

· · ·Y q
bq
.

δab will denote the identity map, i.e. δacXc = Xa, δcaYc = Ya, and, last of all, symetrisa-
tion/antisymetrisation will be written as follows:

T(a1,...,an) = 1
n!

∑
σ∈Sn

Taσ(1),...aσ(n) ,

T[a1,...,an] = 1
n!

∑
σ∈Sn

ε(σ)Taσ(1),...aσ(n) .

1.1.2 Concrete indices

Since abstract indices are not relative to any local frame ea1, . . . , ean of the vector bundle,
we will need another notation for the components in such a frame. The solution we will
adopt is to use either bold characters, the latin letters i, j, k or Greek letters. Unlike ab-
stract indices, concrete indices do have integer values, hence, using Einstein’s summation

14
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convention:
Xa = Xaeaa =

n∑
i=1

X ieai .

In the above Xa (or X i) are scalar functions. Finally, if eaa is the dual local frame, then:

eaaX
a = Xa,

eaae
a
b = eaaδ

a
b e
b
b = δab ,

where δab is, consequently, the identity matrix.

Remark 1.1.1. Despite the resemblance with the summation convention, there is no im-
plicit sum in the notation: XaYa for contraction with abstract indices, nevertheless:

XaYa = Xaeaae
b
aYb = XaδabYb = XaYa,

and in the last equality there is implicit summation over the index a.

1.1.3 The vocabulary of Lorentzian geometry

A real vector space V is said to be « Lorentzian » if it is equipped with a symmetric
bilinear form g of signature (n, 1), also written, (−,+, . . . ,+) 2. Due to its significance in
physics, a specific language has developed for Lorentzian signature bilinear forms. Vectors
are classifed according to the sign of g(x, x), x ∈ V :

1. x ̸= 0 is causal if g(x, x) ≤ 0,

2. x is time-like if g(x, x) < 0,

3. x ̸= 0 is isotropic, null or light-like, if g(x, x) = 0,

4. x space-like si g(x, x) > 0.

Similarly, subspaces of V are classified according to the signature of the induced bilinear
form. In particular, if F is a vector subspace of V , F is said to be:

1. time-like if g|F is Lorentzian,

2. isotropic, null or light-like if g|F is degenerate,

3. spacelike if g|F is positive definite.

2. In Chapter 3, however we will adopt the opposite signature convention (1, n).
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The lightcone is the hypersurface C defined by the equation g(x, x) = 0. A time-orientation
of V is a choice between one of the two connected components of C \{0}: all of the non-zero
causal vectors inside the chosen component will be said future-oriented; correspondingly,
those in the other component will be said past-oriented. A time-like vector x ∈ V and a
causal vector y ∈ V have same time-orientation i.e. are inside the same component of the
punctured lightcone, if and only if g(x, y) < 0. Note also that two linearly independent
causal vectors cannot be orthogonal. Incidently a time-orientation can be thought of as
choice of non-zero causal vector.

A Lorentzian manifold is a pseudo-Riemannian manifold (M, g) such that the metric
tensor g has Lorentzian signature. A time-orientation forM is a choice of a continuous non-
vanishing causal vector field. Finally a spacetime is a time-oriented Lorentzian manifold.

1.2 Principal fibre bundles

1.2.1 Definition

Principal fibre bundles offer a unified perspective of many of the geometric concepts
that we will encounter. Spinors, tractors, densities and even usual tensors can all be
described in a particularly efficient manner in terms of a fibre bundle. They can also be
used to give a more general definition of the notion of connection. Without further a-due,
here is the definition.

Definition 1.2.1. Let G be a Lie group and M a smooth manifold. A G-principal fibre
bundle with base M , written (P, π,M) or (P,G, π,M), is a smooth manifold P equipped
with a smooth surjective map π : P → M and a smooth right-action of G on P that
satisfies:

— For any x ∈ M , there is an open neighbourhood U of x and a diffeomorphism
ϕ : π−1(U) → U ×G such that:

ϕ(p · g) = ϕ(p) · g,

where, on the right-hand side, ϕ(p) · g is the canonical right action of G on U ×G.
Such an open neighbourhood U will be called a « trivialising neighbourhood » and
the couple (ϕ, U) « bundle chart ».
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— If πU : U ×G → U denotes the canonical projection, then:

πU(ϕ(p)) = π(p).

When the base manifold is clear from the context, we will simply write (P, π) or (P,G, π).
Finally, when x ∈ M , the set π−1({x}) is called the « fibre above x ».

Before discussing a fundamental and illuminating example, let us first quote the fol-
lowing properties:

Proposition 1.2.1. In the notation of the definition:
1. The right-action of G on P preserves the fibres in the sense that for any p ∈ P, g ∈ G,

we have: π(pg) = π(p).
2. G acts freely on P .
3. π−1({π(p)}) is the orbit of p under the action of G.

Proof. 1. Let p ∈ P , and choose a bundle chart (ϕ, U) near π(p), then:

ϕ(p)g = ϕ(pg),

so pg ∈ π−1(U). Moreover:

πU(ϕ(p)g) = πU(ϕ(p)) = π(p),

πU(ϕ(p)g) = πU(ϕ(pg)) = π(pg),

which proves the first point.
2. Let p ∈ P , g ∈ G that stabilises p and (ϕ, U) a bundle chart. By assumption, pg = p

so ϕ(pg) = ϕ(p), hence: ϕ(pg) = ϕ(p)g = ϕ(p) and g fixes ϕ(p) in U ×G. Since the
canonical right-action of G on U ×G is free, it follows that g = e.

3. Fix p ∈ P , since π(pg) = π(p), {pg, g ∈ G} ⊂ π−1({π(p)}). For the other inclusion,
choose r ∈ π−1({π(p)}) and (ϕ, U) a bundle chart near π(p) = π(r) = x. Write,
ϕ(r) = (x, g′) and ϕ(p) = (x, g), g, g′ ∈ G, then: ϕ(r) = ϕ(p)g−1g′ = ϕ(pg−1g′).
Thus, since ϕ is injective, r = pg−1g′.

The final point of the preceding Proposition implies that each of the fibres of P is dif-
feomorphic (as a manifold), in a non-canonical way, to the group G. Just like in affine
space there is no privileged choice of identity and the fibres do not have a canonical group
structure. To clarify further this structure, we shall now introduce a model example.
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1.2.2 The frame bundle of a vector bundle

In this section we will discuss how to naturally associate with any vector bundle
(E, πE, V ) with base M and m-dimensional fibre V , a GL(V )-principal fibre bundle L(E)
over M , called the « frame bundle » of E. A generic fibre L(E)x over a point x ∈ M will
intuitively be the set of all linear frames of the fibre Ex = π−1

E ({x}). Formally, we set:

L(E) = {(x, ux), x ∈ M,ux ∈ GL(V,Ex)} . (1.1)

The projection map for the principal bundle, π, is defined by π(x, ux) = x and we shall
make GL(V ) act from the right on L(E) according to the equation:

(x, ux)g = (x, ux ◦ g), g ∈ GL(V ).

In order to make L(E) into a smooth fibre bundle, we need to ascribe it a topology and
differential structure. To this end, consider a bundle atlas A of E, i.e. a family of (vector)
bundle charts (ψ,U) where ψ : π−1

E (U) → U × V is a diffeomorphism such that for each
x ∈ U the restriction of ϕ to the fibre Ex above x induces a vector-space isomorphism
between Ex et V , and, where U runs over an open cover of the base M . For each chart
(ψ,U), define a family of isomorphisms αx ∈ GL(V,Ex), x ∈ U by v 7→ ϕ−1(x, v) and set:

ψ̃ :
π−1(U) −→ U ×GL(V )
(x, ux) 7−→ (x, α−1

x ◦ ux)
. (1.2)

ψ̃ is easily seen to be bijective, and:

B =
{
ψ̃−1(O), (ψ,U) ∈ A , O ⊂ U ×GL(V ) open

}
,

is a basis for a topology on L(E) which promotes each ψ̃ to a homeomorphism. About
each point p ∈ L(E) one can shrink U so that is the domain of some coordinate chart
(ϕ, U) on M and construct a local chart ψ̄ : ψ−1(U) → ϕ(U) × GL(V ) by composing ψ̃
with:

ϕ× IdGL(V ) : U ×G −→ ϕ(U) ×G,

(x, g) 7−→ (ϕ(x), g).

This specifies a differential atlas that makes the ψ̃ diffeomorphisms.

It follows from our discussion that on each smooth n-dimensional manifold M , one can
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construct a GLn(R)-principal fibre bundle: the linear frame bundle of its tangent bundle
TM . In the sequel, we will see how one can describe the usual tensor bundles over TM
using GLn(R) and how to construct new vector bundles.

1.3 Principal connections

We come now to the important topic of connections on a principal fibre bundle. In
theoretical physics, fibre bundles are used to write down gauge theories, and the notion
of connection we now seek to define enables the definition of a covariant derivative for
particle fields. In geometry, connections (on the frame bundle) are used to define geodesics
and curvature. There are at least three equivalent definitions of a connection, each with
its own conceptual or computational advantages. In order to introduce the first definition,
we shall first translate into the language of fibre bundles the more familiar notion of affine
connection that is used in classical texts on Differential Geometry. We recall first, for
instance from [Car92], the following definition:

Definition 1.3.1. An affine connection on the tangent bundle is a map: ∇ : Γ(TM) ×
Γ(TM) → Γ(TM) such that:

1. For any Y ∈ Γ(TM), X 7→ ∇XY is a linear endomorphism of the C∞(M)-module
Γ(TM) of vector fields over M ,

2. For each X, Y ∈ Γ(TM) and f ∈ C∞(M), ∇X(fY ) = X(f)Y + f∇XY .

Using Penrose’s abstract index notation [PR84], a connection is therefore an operator ∇a

that, for any vector field Xb and smooth function f , satisfies:

∇a(fXb) = (∇af)Xb + f∇aX
b,

where ∇af is simply the differential of f .

1.3.1 Affine connection and local moving frames

Consider now an open set U ⊂ M and (e1, . . . , en) an n-tuple of smooth vector fields
defined on U such that for each x ∈ U , (e1(x), . . . , en(x)) is a basis of the tangent space
TxM . We will now switch to the notation described in 1.1.1. Each vector field Xa on U
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can be written Xa = Xaeaa, where the Xa are smooth functions on U . Let us calculate
∇bX

a:
∇bX

a = ∇b(Xaeaa) = (∇bX
a)eaa +Xa∇be

a
a,

= (∇bX
a)eaa + eac∇be

c
dX

deaa.
(1.3)

It transpires from the final equation that the local action of the affine connection can be
described in terms of the matrix of differential forms ωadb = eac∇be

c
d. This can equivalently

be seen as a differential form with values in Mn(R) 3 that we will call a: « local connection
form ».

To picture this, one can imagine the data contained in the vector fields (eaa) as attaching
a local frame of the tangent space to each point x ∈ U that « moves » smoothly as x varies.
The « infinitesimal » change in the frame as it moves from x to a point x + δx, to first
order in δx, is described by an element of Mn(R) = gln(R), the Lie algebra of GLn(R),
which corresponds to: (ωad).

A natural question arising now is: given two non-disjoint open sets U and V and two
moving frames (ei) and (ẽi) on U and V respectively, what relation exists between the
two corresponding local connection forms ω = (ωij) and ω̃ = (ω̃ij) on U ∩ V ? To answer
this, let us define for each x ∈ U ∩ V , P (x) = (P i

j (x)) the change of basis matrix from
(ei(x)) to (ẽi(x)), and denote by Qi

j(x) its inverse. Let X be a fixed vector field defined
on U ∩ V , one has:

ω̃ij(X) = ẽi(∇X ẽj) = Qi
me

m∇X(P k
j ek),

= Qi
mX(P k

j ) em(ek)︸ ︷︷ ︸
δm

k

+Qi
mω

m
k(X)P k

j ,

= Qi
mX(Pm

j ) +Qi
mω

m
k(X)P k

j .

(1.4)

Denoting by dP (x) the matrix whose coefficients are the differentials of those of P (x) we
can rewrite (1.4):

ω̃(X) = P−1dP (X) + P−1ω(X)P. (1.5)

This short analysis shows that an affine connection in the sense of Definition 1.3.1 can be
encoded in a family of matrix valued forms, satisfying the compatibility condition (1.5),
defined on a bundle atlas of M . It is easily seen that if (ei) is a coordinate basis ∂

∂xi

associated to some local chart, then (ωij) encodes the familiar Christoffel symbols.
Furthermore, the two terms on the right-hand side of (1.5) have a natural interpreta-

3. i.e. a section of the vector bundle Λ1(T ∗U) ⊗ (M × Mn(R)), see also Appendix C.
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tion in terms of the multiplication in the Lie group GLn(R). If g ∈ GLn(R) then define
the maps:

— Lg : A ∈ GLn(R) 7→ gA

— Adg: A 7→ gAg−1,

— adg ∈ L(gl(R)) the differential at Id of Adg.

The map Lg gives rise to a canonical gln(R)-valued differential form 4 on GLn(R) defined
by:

θ(X)(g) = dLg−1
g
(Xg),

for any vector field X ∈ Γ(TGLn(R)). This form is known as the « Maurer-Cartan form ».
We note at this point that none of these objects are specific to GLn(R) and can be defined
mutatis mutandis on any Lie group G. Nevertheless, for matrix Lie groups, for which the
tangent spaces can be identified with vector subspaces of Mn(R), these maps are easily
determined. In particular, (1.5) can in fact be written for any x ∈ U ∩ V :

ω̃x = (P ∗θ)x + adP−1(x)(ωx). (1.6)

In the above formula, P ∗ is the pullback of the Maurer-Cartan form θ by the map x 7→
P (x), i.e. (P ∗θ)x(Xx) = θP (x)(dPx · Xx), for each x ∈ U ∩ V,Xx ∈ TxM . We justify the
first term: let Xx ∈ TxM and γ be a smooth curve such that γ(0) = x, γ̇(0) = Xx then:

dPx(Xx) = d
dtP (γ(t))

∣∣∣∣∣
t=0

.

Furthermore: t 7→ P (γ(t)) is a curve γ̃ in GLn(R) that satisfies γ̃(0) = P (x) and ˙̃γ(0) =
d
dtP (γ(t))

∣∣∣
t=0

, therefore:

(P ∗θ)x(Xx) = dLP (x)−1
P (x)(dPx(Xx)) = d

dt
(
P (x)−1P (γ(t))

)
= P (x)−1dPx(Xx).

Up to now, we have yet to discuss what any of this has to do with L(TM). We first need
to introduce a little extra material.

4. which also gives a global trivialisation of the tangent bundle of GLn(R)
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1.3.2 Local sections of a principal fibre bundle, transition func-
tions

Definition 1.3.2. Let (P,G, π,M) be a principal fibre bundle, and U an open subset of
M . A local section of P on U is a smooth map σU : U → P such that for each x ∈ U ,
π(σU(x)) = x.

Proposition 1.3.1. Retaining the notation introduced in the previous definition, any lo-
cal section on U determines a local bundle chart (ψ,U) and, conversely, every local bundle
chart (ψ,U) determines a local section.

Proof. If σU is a local section, define ψ : π−1(U) → U ×G by:

ϕ(σU(x) · g) = (x, g).

In the above equation, σU(π(p)) is used to identify the fibre above π(p) = x to G by
mapping σU(π(p)) to e. Conversely, if (ψ,U) is a local bundle chart, then σU(x) = ψ−1(x, e)
is a local section.

Local sections of L(TM) are closely related to the intuitive notion of moving frames used
earlier. To see this, suppose that σU is such a local section of L(TM). By definition of
L(TM), this is equivalent to a family (ux)x∈U of linear maps ux ∈ GL(Rn, TxM). Such a
family determines a basis of each TxM : the image of the canonical basis of Rn. It is clear
that a moving frame is equivalent to such a family and therefore to a local section.

Now, if (ϕ, U) and (ψ, V ) are two local bundle charts with U ∩ V ̸= ∅ and we write
ϕ(p) = (π(p), sU(p)) and ψ(p) = (π(p), sV (p)), then for each x ∈ U ∩ V , the element
sV (p)(sU(p))−1 ∈ G is in fact independent of the choice of p in the fibre above x, π−1({x}).
Indeed, if r = pg is another element in the fibre then:

sV (r)sU(r)−1 = sV (pg)sU(pg)−1 = sV (p)g(sU(p)g)−1 = sV (p)sU(p)−1.

This leads to the following definition:

Definition 1.3.3. Using the same notation as above, the smooth map defined for each
x ∈ U ∩ V by:

gV U(x) = sV (p)(sU(p))−1,

where p ∈ π−1({x}) is arbitrary, is called a transition function.
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The transition function describes how to change the local bundle chart. This can be seen
through inspection of the map ψ ◦ ϕ−1 on (U ∩ V ) ×G given by:

ψ ◦ ϕ−1(x, g) = (x, gV U(x)g).

Indeed, for p = ϕ−1(x, e), gV U(x) = sV (ϕ−1(x, e)) and:

ψ ◦ ϕ−1(x, g) = (x, sV (ϕ−1(x, g))) = (x, sV (ϕ−1(x, e)g)) = (x, sV (ϕ−1(x, e))g).

The transition functions satisfy the following properties:

Proposition 1.3.2.

gUU = e, gUV = g−1
V U , gUV gVWgWU = e. (1.7)

It is in fact the case that the transition functions contain all of the information of
the fibre bundle; the above properties guarantee that local bundle charts can be glued
together appropriately. They are easily interpreted in terms of the local sections σU and
σV determined by (ϕ, U) and (ψ, V ): on U ∩V , σUgUV = σV . On L(TM), thinking of local
sections as moving frames, gUV is just the change of basis matrix from σU(x) to σV (x). We
can now reformulate our previous conclusions as follows: an affine connection on L(TM)
is equivalent to the data consisting of a matrix-valued differential form ωU on each local
bundle chart (ϕ, U) of L(TM). On the intersection of any two local bundle charts U et
V , the forms ωU and ωV must satisfy:

ωV = (g∗
UV θ) + adg−1

UV
(ωU). (1.8)

This leads to the first definition of a connection on a principal fibre bundle:

Definition 1.3.4. Let (P, π,M) be a G-principal fibre bundle over M , a connection on
P is the data consisting of a differential form ωU with values in the Lie algebra g of G
for each local section σU of P , such that if two local sections are related by σV = σUgUV

then:
ωV = (g∗

UV θG) + adg−1
UV

(ωU), (1.9)

where θG is the Maurer-Cartan form of G.
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1.3.3 Vertical vectors

The above definition is very useful for local computations on manifolds, and is used
extensively in the Physics literature. However, from a conceptual perspective it is inter-
esting to point out that these local connection forms actually stem from a global object
defined on P . To see this we first need to study the projection map π of a G-principal
fibre bundle (P, π,M) in more detail.

According to Definition 1.2.1, π : P → M is a smooth surjection. In fact, π is a
submersion since, if p ∈ P , one can always find a local section σU (cf. Proposition 1.3.1),
that satisfies σU(π(p)) = p. Such a section is a differentiable right inverse of π and the
tangent map dσUx is a right inverse of dπσU (x) = dπp. Consequently, (Vp)p∈P , where Vp =
ker dπp is a smooth distribution of TP .

Elements of Vp, p ∈ P will be referred to as vertical vectors. Intuitively, they are the
vectors in TpP that have no component in the direction of the basis. In other words, they
are the tangent vectors to curves entirely contained in one of the fibres of P .

Definition 1.3.5. Denote the Lie algebra of G by g and let A ∈ g. A gives rise to a
vector field, called the fundamental field, A∗, according to the formula:

A∗
p = d

dt(p exp(At))
∣∣∣∣∣
t=0

. (1.10)

For fixed p, A∗
p is nothing more than the image of A under the tangent map at e of the

map Lp : G → P , given by Lp(g) = pg. Hence, for fixed p, A 7→ A∗
p is linear, and we

claim that it is injective: suppose that A∗
p = 0 for some A ∈ g, and let s ∈ R, then:

0 = d
dt (p exp(tA) exp(sA))

∣∣∣∣∣
t=0

= d
dt (p exp((t+ s)A))

∣∣∣∣∣
t=0

= d
dt (p exp(tA))

∣∣∣∣∣
t=s

It follows that s 7→ p exp(sA) is the constant map s 7→ p. Since the group G acts freely
on P necessarily exp(sA) = e for every s ∈ R. However, exp : g → G is a local
diffeomorphism near 0, so A = 0. Last of all, A∗

p ∈ Vp for each p, since:

dπp(A∗
p) = d

dt(π(p exp(At)))
∣∣∣∣∣
t=0

= d
dtπ(p)

∣∣∣∣∣
t=0

= 0.

Consequently, this induces a vector space isomorphism Vp ∼= g, and at each p ∈ P we have
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the following short exact sequence:

0 → g → TpP → Tπ(p)M → 0.

A local section σU right splits the sequence:

0 → g → TσU (x)P → TxM → 0,

so that we have the isomorphism: TσU (x)P ∼= g ⊕ TxM.

1.3.4 Connection as a g-valued differential form on P

We can now introduce the second definition of a connection that we alluded to at the
beginning of the preceding paragraph. To illustrate the construction, we return to the
example of an affine connection; our arguments are, however, completely independent of
this choice and can be applied to any connection as defined by Definition 1.3.4.

Suppose that we have a local connection form ωU on each local bundle chart (ϕ, U)
of L(TM) and that they are compatible in the sense of (1.8) on the intersection of any
two charts. For any given chart (ϕ, U), let σU denote the section of L(TM) given by
σU(x) = ϕ−1(x, e). In light of the concluding remarks of the previous paragraph, for each
x ∈ U we define a linear map: ωσU (x) : TσU (x)L(M) → Mn(R) by:

ωσU (x)(dσUx(Y ) + A∗
σU (x)) = ωUx(Y ) + A, Y ∈ TxM. (1.11)

We then extend the definition to other points in the fiber above x by imposing the equiv-
ariance:

R∗
gω = adg−1ω, (1.12)

where Rg is the smooth map p 7→ pg. This means that for any p ∈ π−1({x}), g ∈ GLn(R):

ωpg(dRg(X)) = adg−1ωp(X), X ∈ TpP. (1.13)

In this way we get a smooth matrix valued differential form on the bundle π−1(U), that,
additionally, satisfies:

ω(A∗) = A. (1.14)

This can be seen in the following manner. Let p ∈ π−1(U) and set x = π(p). One can find
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g ∈ GLn(R) such that p = σU(x)g, hence:

ωp(A∗
p) = adg−1ωσU (x)(dRg−1

p
(A∗

p)).

Moreover, for any A ∈ g:

dRg−1
p
(A∗p) = d

dt
(
p exp(At)g−1

)∣∣∣∣∣
t=0

= d
dt
(
pg−1g exp(At)g−1

)∣∣∣∣∣
t=0

,

= d
dt
(
pg−1 exp(adgAt)

)∣∣∣∣∣
t=0

,

= (adgA)∗
σU (x).

Consequently: ωp(A∗
p) = adg−1adgA = A.

In order to complete the construction of a differential form on L(TM), it remains to
show that the definition is consistent on the intersection of any two bundle charts U, V .
Let (ϕ, U) and (ψ, V ) be two local bundle charts and denote by σU , σV the associated
local sections. Finally, we call ωU and ωV the forms on π−1(U) and π−1(V ) respectively,
constructed as described above from local connection forms ωU and ωV on U and V

respectively.

The invariance (1.12) implies that it is sufficient to check that for x ∈ U ∩V : ωVσV (x) =
ωUσV (x). Additionally, (1.14) implies that we only need to show that for any vector field
Y ∈ TxM :

ωVσV (x)(dσV x(Y )) = ωUσV (x)(dσV x(Y )).

Let us evaluate the right-hand side:

ωUσV (x)(dσV x(Y )) = ωUσU (x)gUV (x)(d(σUgUV )x(Y )),

= ωUσU (x)gUV (x)

(
dLσU (x)gUV (x)

(dgUV x(Y )) + dRgUV (x)x(dσUx(Y ))
)
,

= adgUV (x)−1ωUσU (x)(dσUx(Y )) + ωUσU (x)gUV (x)

(
dLσU (x)gUV (x)

(dgUV x(Y ))
)
.

In the last two lines we recall that Lp, p ∈ L(TM) is defined by: g 7→ pg. Let us focus
our attention on the second term of the final equation. Choose a curve γ on M such that

26



Introduction

γ(0) = x and γ̇(0) = Y , and note that:

dLσU (x)gUV (x)
(dgUV x(Y )) = d

dt (σU(x)gUV (γ(t)))
∣∣∣∣∣
t=0

,

= d
dt
(
σV (x)gUV (x)−1gUV (γ(t))

)∣∣∣∣∣
t=0

.

(1.15)

From the final equation we see the left-hand side is actually a tangent vector to a curve
in the fibre of L(M) containing σV (x); in other words it is a vertical vector field. To
determine to which element A ∈ gln(R) it corresponds, we only need to calculate the
derivative at 0 of the curve in GLn(R) given by t 7→ gUV (x)−1gUV (γ(t)). The result is:
dLgUV (x)−1

gUV (x)(dgUV x(Y )) = (g∗
UV θ)x(Y ). Therefore, using (1.8):

ωUσV (x)(dσV x(Y )) = adgUV (x)−1ωUx(Y ) + (g∗
UV θ)x(Y ),

= ωV x(Y ).
(1.16)

Since ωU et ωV coincide on their common domain of definition, we have thus shown that
they can be glued together to yield a matrix valued differential form on L(TM). This
leads to the following definition:

Definition 1.3.6. Let (P,G, π,M) be a smooth principal fibre bundle. A connection on
P is a smooth g-valued differential form ω that satisfies:

1. ω(A∗) = A,

2. R∗
gω = adg−1ω.

As remarked above, our previous computations generalise without essential modification
to the case of an arbitrary Lie group G with Lie algebra g. Furthermore, they are the
hard part of the proof that Definition 1.3.6 is equivalent to Definition 1.3.4. To obtain ωU
from ω, it suffices to pullback along the local section σU

5: ωU = σ∗
Uω.

1.3.5 Principal connection as a G-equivariant horizontal distri-
bution

To close this discussion on principal connections, we would like to mention that there
is a third equivalent definition, which is conceptually useful:

5. This is quite natural given the short exact sequences at the end our discussion on vertical vectors.
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Definition 1.3.7. A principal connection on principal fibre bundle (P,G, π,M) is a
smooth G-equivariant distribution complementary to the vertical vector distribution i.e.
a family of vector subspaces (Hp)p∈P , Hp ⊂ TpP such that for any p ∈ P, g ∈ G.

1. TpP = Hp ⊕ Vp,

2. (dRg)(Hp) = Hpg. (equivariance)

3. The association p 7→ Hp is smooth in the sense that on a neighbourhood of any
point p ∈ P one can find n vector fields that generate Hq at each point q in the
neighbourhood.

For a proof of the equivalence with our previous definitions, we refer the reader to [Nab10;
Ble05].
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1.4 Associated bundles

Throughout this work we will tend to think of principal bundles as a general frame
bundle. The following construction further justifies this point of view and is probably one
of the most important applications of principal fibre bundles used in this thesis.

To introduce our point of view, let us borrow, as we often do, a situation from Physics.
Imagine that we would like to describe the movement of a particle in Newton’s absolute
space. To do this, we set up a frame of reference and a system of cartesian coordinates
(x, y, z). With respect to this frame of reference, we measure a certain number of physical
quantities, of different nature such as the position, velocity or angular momentum, associ-
ated with the movement of the particule. These quantities can each be represented as one
or a collection of real numbers. It is natural to ask, how can we compare our measurements
with those carried out in another frame of reference ? Do these numbers change, and if
so, how ? To simplify things a little, assume that the reference frames are anchored in
the same point so that the transformation group is simply the familiar group of rotations
SO(3). In this situation, we will find that if we rotate our frame using A ∈ SO(3), then
the 3 real numbers that describe the velocity (vi)i∈{1,2,3} change according to the following
rule: ṽi = (A−1)ijvj. In view of this, we will say that the velocity is a « vector » quantity;
similarly, the mass, which will not change, will be said to be a « scalar » quantity. In
other words, we classify quantities according to the representation of the rotation group
to which they correspond.

In General Relativity, tensor quantities of this type are still used to describe systems,
the difference being that the transformation group applies to local frames. The machinery
that we are now going to describe, enables us to construct a vector bundle over a manifold
M , given any G-principal fibre bundle over M - which contains the information about
local frames - and a linear representation (V, ρ) of the group G. We will denote this
vector bundle by P ×G V , the fiber above any point of this bundle is a vector space of
quantities with the transformation rule prescribed by the representation. More generally,
an adaptation of our discussion enables the definition of associated bundles P ×G X for
a number of differentiable actions of the group G on a manifold X.

1.4.1 Constructing an associated vector bundle

Let (P,G, π,M) be a G-principal bundle over M and (V, ρ) a smooth finite dimensional
linear representation (to simplify: V ≈ Kn,K = R,C ) of G. The construction of P ×G V
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is largely inspired by our usual experience of tensor fields. Consider the product manifold
P × V and the smooth left action of G on P × V given by:

G× (P × V ) −→ P × V

(g, (r, v)) 7−→ (rg, ρ(g)−1v).
(1.17)

P ×G V is simply defined as the quotient space (P × V )/G.
To motivate this choice, it is illuminating to think of a pair (r, v) as the data consisting

of a local frame r and the coordinates of a vector v in that frame. Multiplying from the
right a frame by an element g ∈ G corresponds to changing frame (g is the change of basis
matrix) and, accordingly, the components of the vector v should change according to the
usual change of basis rule in linear algebra.

The proof of the fact that P ×G V is a vector bundle over M with fibre V is often
left as an exercise in the literature. For the benefit of impatient readers, we sketch the
proof below. To simplify notations a little we introduce the notation E = P ×G V . Let
p : P × V −→ P ×G V be the canonical projection. Let (ϕ, U) be a local bundle chart and
suppose that p ∈ U, ϕ(p) = (π(p), su(p)). Shrinking, if necessary, U we can assume that it
is the defining domain of a local chart (x, U) on M . Set now:

x : π−1(U) × V −→ x(U) × V

(r, v) 7−→ (x(π(r)), ρ(su(r))v).

Observe that it factors to a map: ˜̄x : p(π−1(U)×V ) −→ x(U)×V . Indeed, if (r, v) ∼ (r′, v′)
then one can find g ∈ G such that r′ = rg and v′ = ρ(g)−1v. Hence:
 x(π(r′)) = x(π(rg)) = x(π(r)),
ρ(su(r′))v′ = ρ(su(rg))ρ(g−1)v = ρ(su(r)g)ρ(g)−1v = ρ(su(r))ρ(g)ρ(g)−1v = ρ(su(r))v.

We will now show that the maps ˜̄x are a bundle atlas for E. This relies on two lemmata:

Lemma 1.4.1. Let G be a topological group and (X,T ) a topological space on which G
acts continuously from the left, i.e. the map (g, x) 7→ g · x is continuous for the product
topology. In this case, if O is an open set in X and A ⊂ G, then the set A · O =
{a · x, a ∈ A, x ∈ O} is open.

Proof. For any fixed g ∈ G, the map x 7→ g·x is a homeomorphism with inverse x 7→ g−1·x;
in particular it is an open map. Hence, g · O is open. The result follows for an arbitrary
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subset A ⊂ G by an arbitrary union of open sets.

Lemma 1.4.2. The canonical projection map p is open.

Proof. Let O be an open subset of P × V . By definition of the quotient topology the set
p(O) is open if and only if p−1(p(O)) is open, but:

p−1(p(O)) = {(r, v) ∈ P × V, p(r, v) ∈ p(O) } ,

= {(r, v) ∈ P × V, ∃(r′, v′) ∈ O, p(r, v) = p(r′, v′)} ,

=
{
(r, v) ∈ P × V, ∃(r′, v′) ∈ O, ∃g ∈ G, (r, g) = (r′g, ρ(g)−1v)

}
,

= g ·O.

Since the action defined by (1.17) is continuous, we conclude by the previous Lemma.

It follows that the defining domain of ˜̄x, p(π−1(U) × V ), is an open subset of E. Define
now the surjective map:

π̄ : P × V −→ M

(p, v) 7−→ π(p),

which factors, like x̄, to a surjective map: ˜̄π : E −→ M . Moreover:

π̄−1(U) = p−1(˜̄π−1(U)).

Therefore, since p is surjective, one has:

p(π̄−1(U)) = ˜̄π−1(U),

furthermore, π̄−1(U) = π−1(U) × V , thus:

˜̄π−1(U) = p(π−1(U) × V ). 6

Overall: ˜̄x : ˜̄π−1(U) −→ x(U) × V ⊂ Rn × V . To show that ˜̄x is itself a homeomorphism,
we describe explicitly its inverse. Choose an arbitrary element g ∈ G and set:

ϕ :
x(U) × V −→ ˜̄π−1(U) = p(π−1(U) × V )

(a, b) 7−→ p(ϕ−1(x−1(a), g), ρ(g)−1 · b)).
(1.18)

6. This is actually sufficient to prove that it is open.
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As a composition of continuous functions, ϕ is continuous and is actually independent of
the choice of g 7. Moreover:

ϕ(˜̄x(p(r, v))) = ϕ((x(π(r)), ρ(su(r))v)) = p(ϕ−1(π(r), g), ρ(g)−1ρ(su(r))v)).

Define r′ = ϕ−1(π(r), g), clearly: r′ ∈ π−1(π(r)) so r′ and r are in the same orbit, hence
we can find g′ ∈ G satisfying r′ = rg′ i.e. r = r′g′−1. By consequence:

p(ϕ−1(π(r), g), ρ(g)−1ρ(su(r))v)) = p(r′, ρ(g)−1ρ(su(r′g′−1)v)

= p(rg′, ρ(g)−1ρ(su(r′)︸ ︷︷ ︸
g

)ρ(g′−1)v),

= p(rg′, ρ(g′)−1v).

Hence:
ϕ(˜̄x(p(r, v))) = p(rg′, ρ(g′)−1v) = p(r, v),

and ϕ is a right inverse of ˜̄x. Let us compute now ˜̄x(ϕ(a, b)):

˜̄x(ϕ(a, b)) = ˜̄x(p(ϕ−1(x−1(a), g), ρ(g)−1b)),

= x̄(ϕ−1(x−1(a), g), ρ(g)−1b),

= (a, ρ(g)ρ(g)−1b) = (a, b).

Consequently, ϕ is the inverse map to ˜̄x, which is a homeomorphism. If we consider the
maximal atlas containing all charts constructed in this manner, it is not difficult to see
that this is a smooth structure for E which is hence a smooth manifold of dimension
dimM + dimV . Furthermore, studying the form of these charts, one can see that E
is a vector bundle over M with model fibre V . For instance, a fibre Vq = ˜̄π−1({x}) =
p(π̄−1({q})) = p(π−1({q})×V ), q ∈ M is naturally equipped with a vector space structure
induced by that of {r}×V for each r ∈ π−1({x}). Indeed, if v1 = p(r, v) and v2 = p(r′, v′)
are two elements of Vq, then, since r′ ∈ π−1({π(r)} = {q}), one can find g ∈ G such that
r = r′g. In particular: v2 = (r, ρ(g)−1v′). Consequently we set:

v1 + v2 = p((r, v) + (r, ρ(g)−1v′)) = p(r, v + ρ(g)−1v′),

7. It would have been simpler to take directly g = e.
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this is independent of the choice of representative and so we have a well-defined addition
+. Analogously, if λ ∈ K, we set:

λ · v1 = p(λ · (r, v)) = p((r, λv)).

Once more, linearity of the representation can be used to show that this definition is
independent of the choice of (r, v) in the class p(r, v):

p((r, λv)) = p(rg, ρ(g)−1(λv)) = p(rg, λρ(g)−1v).

This linear structure is chosen so that ϕ̃q = ˜̄x|˜̄π−1({q}) : Vq −→ {x(q)} × V becomes a
vector space isomorphism:

ϕ̃q(λv1 + µv2) = ˜̄x(p(r, λv1 + µv2)) = (x(q), ρ(su(r))(λv1 + µv2)),

= (x(q), λρ(su(r)).v1 + µρ(su(r))v2)),

= λ(x(q), ρ(su(r)).v1) + µ(x(q), ρ(su(r))v2),

= λϕ̃q(v1) + µϕ̃q(v2); λ, µ ∈ K, vi ∈ Vq.

We omit the proof that the action is proper which implies that P×GV is indeed Hausdorff.

1.4.2 Examples of associated bundles

We will now give some examples of associated bundles, the first of which are the usual
tangent and cotangent bundles TM et T ∗M :

1. TM is the associated bundle to L(TM) corresponding to the fundamental repre-
sentation of GLn(R),

2. T ∗M is the associated bundle L(TM) corresponding to the dual or contragredient
representation: P 7→ tP−1,

3. more generally, the bundle of tensors of type (p, q) is the associated bundle to L(TM)
corresponding to the representation (ρ,⊗p+qRn), defined by:

ρ(P )v1 ⊗ · · · ⊗ vp ⊗ l1 ⊗ · · · ⊗ lq = (Pv1) ⊗ · · · ⊗ (Pvp) ⊗ (tP−1l1) ⊗ · · · ⊗ (tP−1lq).

The following example is important for Chapter 4, so we present it as a definition:
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Definition 1.4.1. Let ω ∈ C, a projective density of weight ω 8 is a smooth section of
the bundle E(ω) associated to L(TM) with the representation of GLn(R) on R given by:

GLn(R) × R −→ R
(A, v) 7−→ | detA|

ω
n+1v.

If B is any fibre bundle on M , we will write B(ω) for B ⊗ E(ω).

Note that E(ω) is a trivial line bundle; one can construct a non-zero global section using
a partition of unity.

1.4.3 Covariant derivative on an associated vector bundle

A principal connection ω on a principal fibre bundle (P,G, π,M) induces an affine
connection in the sense of Definition 1.3.1 on any associated vector bundle. In Physics
literature this is often referred to as a covariant derivative. The following definition will
help us simplify the construction:

Definition 1.4.2. Let (P,G, π) and (P ′, G′, π′) be two fibre bundles over M and ϕ : P →
P ′ be a smooth map. ϕ is a principal bundle morphism if:

1. there is a group homomorphism φ : G → G′ such that for any p ∈ P, g ∈ G:

ϕ(pg) = ϕ(p)φ(g),

2. the following diagram is commutative:

P P ′

M

π

ϕ

π′
.

Presently, an interesting example is given by the following lemma:

Lemma 1.4.3. Let (P,G, π,M) be a principal fibre bundle and P ×G V an associated
vector bundle corresponding to a representation (V, ρ) of G. In this case, there is a princi-
pal bundle morphism P −→ L(P ×G V ) where L(P ×G V ) is the frame bundle of P ×G V

8. We may also speak of densities of projective weight ω

34



Introduction

(cf. Paragraph 1.2.2) given by:

Φ : P −→ L(P ×G V )
r 7−→ (π(r), ur).

(1.19)

In the above, ur ∈ GL(V, (P ×G V )π(r)) is defined by v 7→ p(r, v) and p is the canonical
projection from P × V onto P ×G V.

Proof. We simply check that: Φ(rg) = Φ(r)ρ(g); for which it is sufficient to show that
urg = ur ◦ ρ(g). For each r ∈ P, g ∈ G: urg(v) = p(rg, v) = p(r, ρ(g)v) = ur(ρ(g)(v)).

It follows that a local section σU of P , gives rise to a local section of L(P ×G V ) according
to the formula σ̃U = Φ◦σU . Furthermore, the tangent map to the representation morphism
ρ at the identity of G induces a Lie algebra representation of g that we will call ρ∗. The
local connection form ωU = σ∗

Uω induces a local connection form on L(P ×G V ) according
to: ω̃U = ρ∗ωU .

To convince ourselves that this is indeed a connection, let us verify that (1.8) holds
for ω̃. Let σV be another local section such that U ∩ V ̸= ∅. Since Φ is a principal fibre
bundle morphism, σ̃V = Φ(σUgUV ) = Φ(σU)ρ(gUV ) and:

ω̃V = ρ∗ωV = ρ∗(g∗
UV θ) + ρ∗adg−1

UV
(ωU).

The result follows from:

ρ∗adg−1
UV

(ωU) = dρe ◦ d(Adg−1
UV

)e(ωU),

= d(ρ ◦ Adg−1
UV

)e(ωU),

= d(Adρ(gUV )−1 ◦ ρ)e(ωU) = adρ(gUV )−1(ω̃U),

and:
ρ∗g

∗
UV θ = dρe ◦ dLg−1

UV gUV

(dgUV ),

= d(ρ ◦ Lg−1
UV

)gUV
(dgUV ),

= dLρ(gUV )−1
ρ(gUV )(dρgUV

◦ dgUV ),

= dLρ(gUV )−1
ρ(gUV )(dρ(gUV )).
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1.4.4 Fibre bundle reductions and geometric properties

The final topic that we wish to touch upon briefly in this walkthrough on Principal
fibre bundles is that of fibre bundle reductions. Our interest in this is mainly conceptual:
orientation or metric tensors can be reinterpreted as reductions of L(M) to an H-principal
fibre bundle where H ⊂ GLn(R) is a closed subgroup.

Definition 1.4.3. Let H be a closed subgroup of a Lie group G, (P, π,M) a G-principal
fibre bundle and ι : H → G the canonical injection. A reduction of P is a H-principal fibre
bundle (P ′, π′,M) and a principal bundle morphism ϕ such that: ϕ(qh) = ϕ(q)ι(h), q ∈
P ′, h ∈ H. In this case: ϕ is an immersion and we have the isomorphism P ′ ×H G ∼= P

where H acts on G by left multiplication.

The existence of a reduction is generally subject to topological constraints. For in-
stance, if G = GLn(R), H = {Id} and P = L(TM) then there is a reduction P ′ if and
only if M is parallelisable. In a similar fashion, if H = GLn(R)+, the subgroup of matrices
with positive determinant, then the existence of a reduction is equivalent to orientability.
This is more easily seen when thinking in terms of an orientation atlas: one can construct
the bundle P ′ by imitating the method described in Paragraph 1.2.2 but restricting to
positively oriented frames: the orientation atlas is exactly what is needed to guarantee
that this is possible. In terms of transition functions, a reduction translates to the possi-
bility to restrict their values to a subgroup. Finally, a choice of metric is equally equivalent
to a reduction of the frame bundle which restricts to orthonormal frames: one can choose
a covering such that the transition functions take their values in O(p, q). If furthermore
M is orientable, one can work with positively oriented orthonormal frames.
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Chapter 2

KERR-DE SITTER SPACETIMES

2.1 Preamble

The original aim of this part of my work was to give a classification of the different types
of geometries within the Kerr-de Sitter family in order to formulate a precise definition
of the so-called « extreme » case. This was in preparation for the scattering theory to be
constructed in Chapter 3 and to the author’s knowledge the result given here was absent
from the literature.

As with all such classifications for analytical black-holes it is based on the study of
the roots of a polynomial depending on the physical parameters of the family. In the case
of Kerr-de Sitter spacetimes, excluding the scalar-flat case, the polynomial is of degree
4. The black-hole is called « extreme » when one of the roots is of multiplicity greater
than one; we determine here the conditions on the parameters for this to occur. This is
achieved solely through algebraic methods.

The significance of these roots is that they correspond to poles in the coefficients of
the black-hole metric. However, these poles are not true physical singularities since it
is possible to analytically extend the manifold through them, obtaining hypersurfaces
referred to as « horizons ». The author’s interest in understanding precisely what this
means caused the work to grow into a larger article that addressed the extension problem
that we describe below. Although its solution is considered known by the community, no
mathematical account existed in the literature and this work fills that hole.

Often, a black-hole geometry arises as a solution to Einstein’s field equations with
apparent singularities in the metric. For instance, the Schwarzschild blackhole (with mass
m) is M = Rt×]0,+∞[r×S2, equipped with the metric g:

g =
(

1 − 2m
r

)
dt2 −

(
1 − 2m

r

)−1
dr2 − r2dσ2 (2.1)

where dσ2 is the usual round metric on S2.
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Chapter 2 – Kerr-de Sitter spacetimes

The expression of g is clearly problematic at points p ∈ M such that r(p) = 0 or
r(p) = 2m. So at this stage, it is only really sensible to consider it separately on the
open subsets U1 = R×]0, 2m[×S2 and U2 = R× ]2m,+∞[×S2 of R × R∗

+ × S2. We
therefore have two Lorentzian manfiolds (U1, g1 = g|U1) and (U2, g2 = g|U2) which, to begin
with, are unrelated. It is nevertheless natural to wonder if it is possible to find another
Lorentzian manifold (N, g̃), in which we can isometrically embed each of the manifolds
(Ui, gi), i ∈ {1, 2} and such that the metric g̃ extends g to one or several points where
it is not defined. Ideally, we would also like the values of g̃ to be completely determined
by those of g near these points. We will study this extension problem in the category
of analytical 1 Lorentzian manfiolds. Consequently, if there is a solution, it is unique by
analytical continuation.

In the case of Schwarzschild’s metric (2.1), the extension problem posed above has
a solution for points where r = 2m. It can be constructed by performing the following
change of coordinates :

R×]2m,+∞[×S2 −→ R×]2m,+∞[×S2

(t, r, ϑ) 7−→ (t− F (r), r, ϑ)
, (2.2)

where F (r) = r + 2m ln(|r − 2m|). In these new coordinates (t′, r′, ϑ′) - known as the
outgoing Eddington-Finkelstein chart - the metric g has the form :

(
1 − 2m

r′

)
dt′2 + 2dr′dt′ − r′2dσ2, (2.3)

which is regular at all points {r′ = 2m}. One can then define the Lorentzian manifold
N = R×R∗

+ ×S2, with metric given by (2.3) and it is easily seen that (U1, gi) and (U2, gi)
can be isometrically embedded into N . The function r′ analytically extends r, and, in N ,
{r′ = 2m} is an isotropic hypersurface, which is referred to as an « event horizon ». The
situation is not as favourable at r = 0 : inspecting geodesics, one can show that there is
no analytic solution to the extension problem there and in this sense it is a true geometric
singularity.

Besides the apparent singularities in the metric, the Schwarzschild blackhole as defined
above has another drawback : a number of its geodesics are incomplete, i.e. there are
maximal solutions to the geodesic equation that are not defined over all of R. Given their
classical physical interpretation, it seems natural to attempt to extend again the manifold

1. We restrict to analytical transition maps, and assume that the metric components are analytical
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to remedy this, at least for geodesics that do not run into the singularity. If one can find an
extension that satisfies this additional condition, it will be said to be a maximal extension.
Our extension N above, is not maximal in this sense, but there are global coordinates that
do lead to a maximal extension. They are known as the Kruskal-Szekeres coordinates, the
interested reader can find the details of this in [Wal84].

This work lead to a publication [Bor18] in Classical and Quantum Gravity available
at : https://iopscience.iop.org/article/10.1088/1361-6382/aae3dc.
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Chapter 2 – Kerr-de Sitter spacetimes

Maximal Kerr-de Sitter spacetimes
The following is the author’s final preprint of the eponymous article [Bor18] published in

Vol. 35 No. 21 of Classical and Quantum Gravity.

2.2 Introduction

Over the past decade or so, there has been increasing interest in asymptotically de
Sitter spacetimes, as opposed to the better-studied asymptotically flat spacetimes, notably
due to the experimental evidence that our universe is actually in expansion, and that this
expansion is accelerating. De Sitter spacetime, named after the Dutch mathematician and
astronomer Willem de Sitter, is one of the simpler models of such a universe. It can be

seen as the submanifold of equation −x2
0 +

n+1∑
i

x2
i = α2, α ∈ R in (n + 2)-dimensional

Minkowski space and is a maximally symmetric vacuum solution to Einstein’s equation
with positive cosmological constant Λ = 3

α2 ; the parameter α is also related to the Ricci
scalar by R = n(n−1)

α2 . In this paper, we are interested in 4-dimensional Kerr-de Sitter
spacetimes describing a rotating black hole on a de-Sitter background. These solutions
where first discussed by Brandon Carter [Car09], but more thorough studies of them,
and in particular of the structure of the roots of the polynomial ∆r according to the
values of the parameters a, l and M , have been delayed, until recently, due to its supposed
more geometrical than physical significance. In recent articles, several authors have shown
interest in Kerr-de Sitter spacetimes, and a numerical study is proposed in [AM11].

In this work we give complete and relatively simple characterisations of the Kerr-
de Sitter analogs of “fast”, “extreme” and “slow” Kerr spacetime and describe in detail
the construction of a maximal analytical extension of the Kerr-de Sitter solution in each
case. The text is organised as follows: in Section 2.3 we give a succinct description of
the geometric properties of the Kerr-de Sitter metric in Carter’s Boyer-Lindquist like
coordinates; the principal result of interest is the computation of the curvature forms
Ωi

j. Following [GH77; AM11], the sign convention for Λ is opposite to that in Carter’s
original work. In Section 2.4, we discuss the root structure of the family of polynomials ∆r

according to the values of the parameters (a, l,M). After writing this article, we discovered
that a similar study had already been lead in [LZ15]; our results confirm and complete
theirs. In Section 2.5, we describe the construction of maximal Kerr-de Sitter spacetimes,
the criterion for maximality being the completeness of all principal null geodesics that
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2.3. The Kerr-de Sitter metric

do not run into a curvature singularity. The results of Section 2.3 confirm the fact that
only minor adaptations of the methods used in [ONe14] are required, however, some of the
proofs are repeated and complements are provided in appendices so that the text is as self-
contained as possible. We decided not to discuss more general geodesics than the principal
nulls used in the construction of maximal extensions, but found that recent articles had
ventured into this terrain: a classification of null geodesics is proposed in [CS17] and a
discussion on all causal geodesics is given in [ZS17].

The signature convention used in this work is (−,+,+,+) and, when units are relevant,
formulae are written in geometric units where G = 1 and c = 1.

2.3 The Kerr-de Sitter metric

In this section we will define the Kerr-de Sitter (KdS) metric g and calculate the
curvature forms Ωi

j on each of the so-called “Boyer-Lindquist blocks” in an appropriate
frame. The algebraic structure of the curvature tensor encoded in these forms will show
that, like that of the Kerr metric, the Weyl tensor of the Kerr-de Sitter metric is of Petrov
type D at each point of these blocks.

The components gij of the Kerr-de Sitter metric on the connected components of the
manifold (Rt × Rr) × S2 \ Σ ∪ H, H = {∆r = 0},Σ = {ρ2 = 0}, referred to as the
Boyer-Lindquist (BL) blocks, are given in table 2.1; some useful alternative expressions
are also given in appendix A.4. When l = 0, these expressions reduce to those of the
usual Kerr metric. The coordinates (t, r, θ, ϕ) will be referred to as Boyer-Lindquist(-like)
coordinates. The parameters a,M and Λ have their usual physical interpretation: M is the

Kerr metric Kerr-de Sitter Metric
gtt −1 + 2rM

ρ2
∆θa

2 sin2 θ−∆r

ρ2Ξ2

grr
ρ2

∆
ρ2

∆r

gθθ ρ2 ρ2

∆θ

gϕϕ
[
r2 + a2 + 2rMa2 sin2 θ

ρ2

]
sin2 θ [∆θ(r2 + a2)2 − ∆ra

2 sin2 θ ] sin2 θ
ρ2Ξ2

gϕt −2rMa sin2 θ
ρ2

a sin2 θ
Ξ2ρ2 (∆r − ∆θ(r2 + a2))

Other All zero All zero
l2 = Λ

3 Ξ = 1 + l2a2 ∆θ = 1 + l2a2 cos2 θ
∆r = ∆ − l2r2(r2 + a2) ρ2 = r2 + a2 cos2 θ ∆ = r2 − 2Mr + a2

Table 2.1 – Metric tensor elements in Boyer-Lindquist like coordinates
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Chapter 2 – Kerr-de Sitter spacetimes

mass of the black hole, a its angular momentum per unit mass and Λ is the cosmological
constant.

As in the case of the Kerr metric, the Kerr-de Sitter metric line element can be divided
into two parts that clearly have an unique analytic extension to all of (Rt×Rr)×S2\Σ∪H
(whereas the expressions in table 2.1 are a priori only valid at points where sin θ ̸= 0).

More precisely we have ds2 = grrdr2 +Q+Q′ where Q and Q′ are the two quadratic
forms given by:

Q = gttdt2 + 2gϕt dϕdt, (2.4)

= −∆θ

Ξ2 dt2 + 1
Ξ2

(
l2(r2 + a2) + 2Mr

ρ2

)([
dt− a sin2 θdϕ

]2
− a2 sin4 θdϕ2

)
,

Q′ = gθθdθ2 + gϕϕdϕ2 = ρ2

∆θ

dσ2 +
(

Ξ
∆θ

(
1 − l2r2

)
+ 2Mr

ρ2

)
a2 sin4 θ

Ξ2 dϕ2. (2.5)

In the last expression dσ2 = dθ2 + sin2 θdϕ2 is the usual line element of the sphere, which
is naturally extendable to the poles. Moreover, the form a sin2 θdϕ is well defined 2 on all
of S2. Hence, the above expressions have unique analytic extensions to the points of the
“axis” A = R2 × {p±} where p± are the poles of the sphere.

The set Σ is the ring singularity of the Kerr-de Sitter spacetime and the zeros of ∆r will
give us the number of Boyer-Lindquist blocks as well as the position of the horizons when
we construct a maximal analytical extension of the Boyer-Lindquist blocks in section 2.5.
Its sign will also be of importance since, as seen from the expression in table 2.1, it
determines the nature 3 of the coordinate vector fields ∂t, ∂r, ∂ϕ. The properties of ∆r will
be studied in section 2.4. For now, we write ε = sgn(∆r) and define an orthonormal frame
(Ei)i∈ {0,...,3} on each Boyer-Lindquist block as follows:

E0 = V Ξ
ρ
√
ε∆r

, E1 =
√
ε∆r

ρ
∂r,

E2 =
√

∆θ

ρ
∂θ, E3 = ΞW

sin θ
√

∆θρ
.

(2.6)

The choice of vector fields V = (r2 + a2)∂t + a∂ϕ and W = ∂ϕ + a sin2 θ∂t to replace ∂t
and ∂ϕ reduces the indeterminacy of the nature of the vectors to the sign of ∆r which

2. In cartesian coordinates it is a(xdy − ydx)
3. space-like g(v, v) > 0, time-like g(v, v) < 0, light-like or isotropic g(v, v) = 0
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2.3. The Kerr-de Sitter metric

will be constant on each Boyer-Lindquist block. It is identical to that in [ONe14] for the
Kerr metric, where they play an important role; this will also be the case for the Kerr-de
Sitter metric. The dual frame is readily determined from (2.6):

ω0 =
√
ε∆r

Ξρ dt− a sin2 θ
√
ε∆r

ρΞ dϕ, ω1 = ρ√
ε∆r

dr, ω2 = ρ√
∆θ

dθ,

ω3 = (r2 + a2)
√

∆θ sin θ
ρΞ dϕ− a

√
∆θ sin θ
ρ Ξ dt.

(2.7)

This furnishes a more compact expression of the line element:

ds2 = −ε(ω0)2 + ε(ω1)2 + (ω2)2 + (ω3)2,

= − ∆r

Ξ2ρ2

[
dt− a sin2 θdϕ

]2
+ ρ2

∆r

dr2 + ρ2

∆θ

dθ2 + ∆θ sin2 θ

ρ2Ξ2

[
(r2 + a2)dϕ− adt

]2
.

(2.8)

From these expressions one can determine the connexion forms 4 v 7→ ωij(v) = ωi(∇vEj),
characterised uniquely by the first structural equation dωi = −∑

m ω
i
m ∧ ωm, and the

curvature forms Ωi
j = dωij +∑

m ω
i
m ∧ ωmj . The curvature forms are:

Ω0
1 = ε(2I + l2)ω0 ∧ ω1 + 2εJω3 ∧ ω2,

Ω0
2 = −εJω1 ∧ ω3 + (I − l2)ω2 ∧ ω0,

Ω0
3 = εJω1 ∧ ω2 − (I − l2)ω0 ∧ ω3,

Ω1
2 = −(I − l2)ω1 ∧ ω2 − εJω0 ∧ ω3,

Ω1
3 = −(I − l2)ω1 ∧ ω3 + εJω0 ∧ ω2,

Ω2
3 = 2Jω0 ∧ ω1 + (2I + l2)ω2 ∧ ω3.

(2.9)

where: I = Mr
ρ6 (r2 −3a2 cos2 θ) and J = Ma cos θ

ρ6 (3r2 −a2 cos2 θ). When l = 0 these formulae
coincide with those in [ONe14] 5. It is surprising to find that the additional contribution
due to the presence of a positive cosmological constant Λ is completely separate from that
of the curvature due to the black hole.

The curvature forms are related to the Riemann curvature tensor by:

ωa(R(Ec, Ed)Eb) = Ra
bcd = Ωa

b(Ec, Ed). (2.10)

4. given in appendix A.1
5. It should be noted that there is a small error in the expression of Ω0

3 given on page 98 of [ONe14],
it should read: Ω0

3 = −Iω0 ∧ ω3 + εJω1 ∧ ω2
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As in the case of Kerr metric, the presence of the factor ρ−6 in these formulae indicates
that the loci of ρ2 = 0 is a real curvature singularity and that there is no sensible extension
of the Boyer-Lindquist block containing Σ to include these points. Using (2.9) we find that
the Ricci tensor is given by:

Rab = 3l2gab = Λgab, (2.11)

and so the Kerr-de Sitter metric is indeed a vacuum solution to Einstein’s field equations
with cosmological constant:

Rab − 1
2Rgab + Λgab = 0. (2.12)

The relative simplicity of (2.9) is reflected in the algebraic decomposition of the Riemann
curvature tensor. In particular, we find that the conformal Weyl tensor 6 is given by:

Cabcd = Rabcd − l2(gacgbd − gadgbc). (2.13)

We can deduce from this that the conformal properties of the KdS-Boyer-Lindquist blocks
are exactly those of the Kerr Boyer-Lindquist blocks (l = 0). In particular:

Proposition 2.3.1.

1. At each point of the Boyer-Lindquist blocks the Weyl tensor has Petrov type D.

2. The principal null directions are determined by the rays of E0 ±E1 or equivalently,
±∂r + Ξ

∆r
V .

Remark 2.3.1. The normalisation chosen here is different from that in [AM11], our choice
is justified by the following lemma.

Proposition 2.3.1 is a statement about the algebraic structure of the Weyl tensor. On
a four dimensional Lorentzian manifold (M, g), Hodge duality can be used to define a
complex structure on the Λ2(TxM) at each point x ∈ M. Exploiting its symmetries and
trace free property, the Weyl tensor at a given point can be interpreted as a symmetric
linear map Cx on Λ2(TxM) (with respect to gx), that is C-linear with respect to this struc-
ture. The Petrov classification is based on a discussion on the eigenvalues of Cx; Petrov
type D is the case in which Cx is diagonalisable and has exactly two distinct eigenvalues.
In this case, the Principal Null Directions are determined by specific eigenvectors. We

6. Cabcd = Rabcd − 1
2 (gacRbd − gadRbc + Racgbd − Radgbc) + R

6 (gacgbd − gadgbc).
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2.3. The Kerr-de Sitter metric

refer to [ONe14, Chapter 5] for more details. We note also that there is a shorter root to
defining the Principal Null Directions provided by Penrose’s spinor formalism, we refer to
either [Wal84, Chapter 13] or [PR88, Chapter 8].

Lemma 2.3.1. On each Boyer-Lindquist block the integral curves of ±∂r + Ξ
∆r
V are

geodesics.

Proof. This is actually a consequence of the Petrov type of the Weyl tensor C 7, but since
we have at our disposition all of the connection forms, we can also verify it directly. The
geodesic equations are given in appendix A.2. Consider an integral curve γ : I 7→ KdS of
∂r + Ξ

∆r
V . It satisfies for t ∈ I:

γ̇(t) = ρ√
ε∆r

|γ(t)E1(t) + ερ√
ε∆r

|γ(t)E0(t). (2.14)

Setting Γ3 = Γ2 = 0 in the left-hand side of the equations in the appendix, shows that
the last one is trivial and the remaining three reduce to:

Γ̇0(t) = − ∂

∂r

(√
ε∆r

ρ

)∣∣∣∣∣
γ(t)

Γ0(t)Γ1(t), (2.15)

Γ̇1(t) = − ∂

∂r

(√
ε∆r

ρ

)∣∣∣∣∣
γ(t)

(
Γ0(t)

)2
, (2.16)

(Γ0(t))2 = (Γ1(t))2. (2.17)

Equation (2.17) is clearly satisfied and, substituting the expressions of Γ0 and Γ1 into the
right-hand side of (2.15) equation, we find:

− ∂

∂r

(√
ε∆r

ρ

)∣∣∣∣∣
γ(t)

Γ0(t)Γ1(t) = −ε ∂

∂r

(√
ε∆r

ρ

)
ρ2

ε∆r

∣∣∣∣∣
γ(t)

= ε
∂

∂r

(
ρ√
ε∆r

)∣∣∣∣∣
γ(t)

,

= drγ(t)(γ̇(t)) ε ∂
∂r

(
ρ√
ε∆r

)∣∣∣∣∣
γ(t)

,

= Γ̇0(t).

7. cf. Goldberg-Sachs theorem [GS09].
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Similarly, for the right-hand side of (2.16):

− ∂

∂r

(√
ε∆r

ρ

)∣∣∣∣∣
γ(t)

(
Γ0(t)

)2
= − ∂

∂r

(√
ε∆r

ρ

)
ρ2

ε∆r

∣∣∣∣∣
γ(t)

= drγ(t)(γ̇(t)) ∂
∂r

(
ρ√
ε∆r

)∣∣∣∣∣
γ(t)

,

= Γ̇1(t).

The remaining case is similar.

2.4 Fast, Extreme and Slow Kerr-de Sitter

In this section we study the structure of the roots of the family of polynomials:

∆r(a, l,M) = r2 − 2Mr + a2 − l2r2(r2 + a2). (2.18)

Throughout the following discussion we will assume that all of the parameters are non-
zero, this guarantees that we are really on a de Sitter background and excludes Schwarzchild-
de Sitter which is studied in [AM11]. Moreover, we assume a > 0, l > 0. There is no loss
of generality in assuming a > 0 as all of the results of this section remain valid under
the substitution a ↔ |a|, alternatively, we can always reverse the orientation of the axis
of rotation. The restriction l ̸= 0 also guarantees that deg ∆r = 4. In the analytical
extensions constructed in section 2.5, each root of ∆r will give rise to a totally geodesic
null hypersurface, that we will refer to as a horizon. Under the hypothesis that l ̸= 0, it
is clear that :

∆r = r2 − 2Mr + a2 − l2r2(r2 + a2) = 0 ⇔ r4 − 1 − l2a2

l2
r2 + 2M

l2
r − a2

l2
= 0. (2.19)

To simplify notations we introduce A = a
l

and m2 = M
l2

, and will therefore study the
structure of the roots of the degree 4 polynomial with real coefficients:

P = X4 − 1 − l4A2

l2
X2 + 2m2X − A2. (2.20)

Let us call (x1, x2, x3, x4) the (not necessarily distinct) complex roots of P . Writing out
the Vieta formulae for this polynomial we know that the roots of P must satisfy the
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following system:

x1 + x2 + x3 + x4 = 0, (i)
x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 = A2l4−1

l2
, (ii)

x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 = −2m2, (iii)
x1x2x3x4 = −A2, (iv)

(2.21)

We can deduce immediately from equation (iv) that for all positive real values of the
parameters A,m2, l the polynomial P will always have at least two distinct real roots
with opposite sign; these are the cosmological horizons. In particular, there is always a
horizon “inside” the singularity (r < 0). Moreover, the multiplicity of any root is at most
3 and there is at most one root with multiplicity > 1.

2.4.1 Extreme Kerr-de Sitter

For the usual Kerr metric, extreme Kerr corresponds to the case where the polynomial
∆r has a double root, i.e. the two black hole horizons coincide. A necessary and sufficient
condition for this is that M2 = a2. In this section we characterise the analogous case for
the KdS metric. In fact, we find that there are three cases where horizons coincide:

1. Three horizons situated in the region r > 0 coincide.

2. The two black hole horizons coincide.

3. The outer black hole horizon coincides with the outer cosmological horizon.

We begin by proving the following proposition:

Proposition 2.4.1. Let a,M, l ∈ R∗
+ and P be defined by (2.20). P has a root with

multiplicity exactly 2 if and only if the parameters satisfy both of the following conditions:

(i) al < 2 −
√

3,

(ii) M2 = (1 − a2l2)(a4l4 + 34a2l2 + 1) ±
√
δ

54l2 .

δ = (al − (2 −
√

3))3(al + 2 +
√

3)3(al + 2 −
√

3)3(al − (2 +
√

3))3.

Furthermore: [P has a root with multiplicity 3] ⇔

 al = 2 −
√

3,
M2 = 16

9

√
3a3l.
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Proof. Firstly, a necessary and sufficient condition for the polynomial P to have a root
with multiplicity > 1 is that its discriminant, ∆(P ), should vanish. We recall that the
discriminant is related to the resultant 8 R(P, P ′) of P and its formal derivative P ′ by:

∆(P ) = (−1)
n(n−1)

2

an
R(P, P ′). (2.22)

In the above formula, n is the degree of the polynomial, and an is the coefficient of the
leading term. Here:

∆(P ) = − 16
l10

(
a10l8 + 4 a8l6 + 6 a6l4 + 27M4l2 + 4 a4l2

+
(
a6l6 + 33 a4l4 − 33 a2l2 − 1

)
M2 + a2

)
,

= − 16
l10

(
27M4l2 + (a2l2 − 1)(a4l4 + 34a2l2 + 1)M2 + a2(a2l2 + 1)4

)
.

Thus:

∆(P ) = 0 ⇔ 27M4l2 + (a2l2 − 1)(a4l4 + 34a2l2 + 1)M2 + a2(a2l2 + 1)4 = 0. (2.23)

This is a second order polynomial equation in M2. We require that the roots be real and at
least one of the roots be positive. However, as a2(a2l2 +1)4 > 0 if one root is positive both
of them are. Moreover, since the sum of the roots is given by −(a2l2 −1)(a4l4 +34a2l2 +1)
when the roots exist and are real, they are both positive if and only if al < 1.

The solutions are real if and only if the discriminant δ of the order two polynomial

Q = 27X2l2 + (a2l2 − 1)(a4l4 + 34a2l2 + 1)X + a2(a2l2 + 1)4,

is positive. We find that:

δ =
[
(1 − a2l2)(a4l4 + 34a2l2 + 1) − 6

√
3al(a2l2 + 1)2

]
×
[
(1 − a2l2)(a4l4 + 34a2l2 + 1) + 6

√
3al(a2l2 + 1)2

]
.

Assuming as necessary al < 1 we see that δ has the same sign as:

ϕ(al) = (1 − a2l2)(a4l4 + 34a2l2 + 1) − 6
√

3al(a2l2 + 1)2.

8. The definition of the resultant is recalled in appendix A.3
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Defining y = al, we are therefore interested in the sign of ϕ(y) for y ∈]0, 1[. One can
check 9 that 2 −

√
3 and 2 +

√
3 are a roots of ϕ and that

ϕ(y) = −(y − (2 −
√

3))3(y + 2 +
√

3)3.

For y ≥ 0, we find that ϕ(y) has opposite sign to y − (2 −
√

3) and so is positive if and
only if y ≤ (2 −

√
3) < 1.

Therefore, we have shown that P has a root with multiplicity > 1 if and only if :

al ≤ (2 −
√

3) and M2 = (1 − a2l2)(a4l4 + 34a2l2 + 1) ±
√
δ

54l2 .

We will now show that when P has a root with multiplicity > 1 it is of multiplicity 3
if and only if al = (2 −

√
3).

Suppose now that P has a root x with multiplicity > 1. In particular the above
conditions are satisfied. x is of multiplicity at least two, and so, we can assume x3 = x4 = x.
Vieta’s formulae (2.21) then reduce to:



x1 + x2 = −2x, (i′)
x1x2 − 3x2 = A2l4−1

l2
, (ii′)

x1x2x− x3 = −m2, (iii′)
x1x2x

2 = −A2. (iv′)

(2.24)

Equation (iv′) show that as A > 0 no root is zero so the system (2.24) is equivalent to:


x1 + x2 = −2x, (i′)
3x4 + A2l4−1

l2
x2 + A2 = 0, (ii′′)

x4 −m2x+ A2 = 0, (iii′′)
x1x2x

2 = −A2. (iv′)

(2.25)

Finally combining (ii′′) and (iii′′) we see that (2.25) is equivalent to:


x1 + x2 = −2x (i′)
A2l4−1
l2

x2 + 3m2x− 2A2 = 0 (ii′′′)
x4 −m2x+ A2 = 0 (iii′′)
x1x2x

2 = −A2 (iv′)

(2.26)

9. either by direct calculation or assuming simply a2l2 + 2
√

3al − 1 = 0
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We assume now that al = 2 −
√

3. It follows that δ = 0, furthermore, noting that
a2l2 + 2

√
3al − 1 = 0, it is straightforward to verify that:

a4l4 + 34a2l2 + 1 = 48a2l2, (2.27)

and therefore:
M2 = 16

9 a
3l

√
3. (2.28)

Consider now (ii′′′), which, written in terms of a is:

a2l2 − 1
l2

x2 + 3m2x− 2a
2

l2
= 0. (2.29)

We find that the equation has one double root given by:

x = m2l
√

3
4a . (2.30)

Now, the other two roots x1, x2, are the roots of the polynomial

R = X2 − (x1 + x2)X + x1x2.

By (2.26) one has:

R = X2 + 2xX − a2

l2x2 , (2.31)

the reduced discriminant δ′ of R is given by:

δ′ = x2 + a2

l2x2 .

Since:
x2 = 3

16m
4 l

2

a2 =
√

3
3
a3

l3
l2

a2 =
√

3
3
a

l
,

it follows that:
1
x2
a2

l2
=

√
3 l
a

a2

l2
=

√
3a
l

= 3x2.

Hence: δ′ = 4x2 and the roots of R are x and −3x. The roots of P and their multiplicities
are then (x, 3), (−3x, 1). Conversely, assume that P has a root of multiplicity 3, say,
without loss of generality: x1 = x and x2 = x3 = x4 = y, Vieta’s formulae (2.21) reduce
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this time to: 

x = −3y, (a)
A2l4−1
l2

= 3xy + 3y2, (b)
3xy2 + y3 = −2m2, (c)
xy3 = −A2. (d)

(2.32)

As before, equation (d) forbids that one of the roots be zero so (2.32) is equivalent to:


x = −3y, (a′)
6y2 = 1−A2l4

l2
, (b′)

4y3 = m2, (c′)
3y4 = A2. (d′)

(2.33)

Equation (c′) shows that y3 > 0 and so y > 0 too, hence equation (b′) gives:

y =
√

1 − A2l4√
6l

.

Equations (c′) and (d′) are compatibility equations, using the expression for y we find
that:

A2 = 1
12l4 (1 − A2l4)2, (2.34)

m2 = 2
3

(1 − A2l4)√
6l3

√
1 − A2l4. (2.35)

As m2 > 0 there is no loss of information in squaring (2.35) to find that:

m4 = 2
27

(1 − A2l4)3

l2
,

or, in terms of M and a:
M2 = 2

27
(1 − A2l4)3

l2
. (2.36)

Expanding (2.34) yields a second order equation for A2:

12A2l4 = (1 − A2l4)2 ⇔ (A2l4 + 2
√

3Al2 − 1)(A2l4 − 2
√

3Al2 − 1) = 0. (2.37)

The equation 0 = A2l4 − 2
√

3Al2 − 1 = a2l2 − 2
√

3al − 1 cannot give any solutions
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compatible with the condition al ≤ 2 −
√

3 < 1 as in this case

a2l2 = 2
√

3al + 1 ≥ 1

Consequently, we consider only the solutions of A2l4 + 2
√

3Al2 − 1 = 0. They are:

A ∈ {2 −
√

3
l2

,−2 +
√

3
l2

}.

As we assume A > 0 the second solution is excluded so A must equal 2−
√

3
l2

which gives:

al = 2 −
√

3. (2.38)

Using the equation a2l2 + 2
√

3al − 1 = 0 we see that (2.36) becomes:

M2 = 2
27

(1 − A2l4)3

l2
= 2

27
(1 − a2l2)3

l2
= 2

27
(2

√
3al)3

l2
= 16

9 a
3l

√
3. (2.39)

Comparing (2.39) and (2.28) we see that the condition ∆(P ) = 0 is satisfied, which
concludes the proof.

We have now characterised all the cases where P has a root with multiplicity > 1, in
the case of the double root we can also show:

Proposition 2.4.2. If P has a root x with multiplicity exactly 2 and

M2 = (1 − a2l2)(a4l4 + 34a2l2 + 1) + ε
√
δ

54l2 , ε ∈ {−1, 1}, (2.40)

then:

x =
12a2l2 + (1 − a2l2)(1 − a2l2 + ε

√
γ)

18m2l4
=

12a2l2 + (1 − a2l2)(1 − a2l2 + ε
√
γ)

18Ml2
, (2.41)

where:
γ = (a2l2 − 1)2 − 12a2l2 = (a2l2 − 2

√
3al − 1)(a2l2 + 2

√
3al − 1).

Proof. To find the expression of x, solve equation (ii′′) of (2.25) for x2, and then use
equation (ii′′′) of (2.26) to find x. To decide which root to take for x2, introduce ε′ ∈
{−1, 1} in front of the radical in the expression for x2 and then square the expression
obtained for x. Injecting into this new expression those of M2 and x2, it is straightforward
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to obtain an expression for ε
√
δ. After simplification we find that ε

√
δ = ε′γ

√
γ. Hence,

using the lemma below: ε′ = ε.

Lemma 2.4.1. δ = γ3

Using this result, we can study the relative position of the double root x with respect to
the other two roots; the above expression (2.41) shows immediately that x > 0. As before,
the other roots are those of the polynomial:

X2 + 2xX − a2

l2x2 .

As expected one of the roots (x−) will be negative and the other positive, the positive
root is given by:

x+ = −x+
√
x2 + a2

l2x2 . (2.42)

We see that x+ > x if and only if
√
x2 + a2

l2x2 > 2x > 0. This holds if and only if:

a2

l2x2 > 3x2,

Or, equivalently:
x4 <

1
3
a2

l2

As x4 = m2x− a2

l2
, we deduce that:

x+ > x ⇔ x <
4
3
a2

M
(2.43)

Note that x = 4
3
a2

M
corresponds to the case where there is a triple root. Rewriting (2.41)

we have:
x = 4

3
a2

M
+
γ + (1 − a2l2)ε√γ

18Ml2
, (2.44)

So if ε = 1 then γ+(1−a2l2)ε√γ
18Ml2

> 0 and so x+ < x. In this case the outer black hole horizon
coincides with the cosmological horizon.
If ε = −1 we show that γ−(1−a2l2)√γ

18Ml2
< 0 and so x+ > x; the two black hole horizons

coincide. This is the closest Kerr-de Sitter analog of extreme Kerr.
In order to show that: γ−(1−a2l2)√γ

18Ml2
≤ 0 we only need to study the sign of √

γ−(1−a2l2).
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i.e. the sign of:
f(y) =

√
(1 − y2)2 − 12y2 − (1 − y2),

when 0 ≤ y ≤ 2 −
√

3. However, f(y) has same sign as :

f(y)(
√

(1 − y2)2 − 12y2 + (1 − y2)) = (1 − y2)2 − 12y2 − (1 − y2)2,

= −12y2 < 0.

To summarise, we have found three cases where horizons coincide:

Proposition 2.4.3. Let (a, l,M) ∈ R∗
+, then 2 horizons coincide if and only if the both

of the following conditions are satisfied:

(i) al < 2 −
√

3,

(ii) M2 = (1 − a2l2)(a4l4 + 34a2l2 + 1) ±
√
δ

54l2 = m2
±.

More precisely:

— If M2 = m2
+ then the outer black hole horizon coincides with the the other cosmo-

logical horizon.

— If M2 = m2
− then the two black hole horizons coincide.

Finally, if al = 2 −
√

3 and M2 satisfies (ii) then all three horizons situated in the region
r > 0 coincide.

2.4.2 Fast and slow Kerr-de Sitter

We will now move on to study the Kerr-de Sitter equivalents to the usual so-called
“fast” and “slow” Kerr black holes. Fast Kerr usually correspond to the case where there
are no horizons. It owes its name to the fact that when l = 0, it is completely characterised
by the condition a2 > M2. “Slow” Kerr, on the other hand, is characterised when l = 0
by the condition a2 < M2. In terms of the roots of the polynomial these cases correspond
respectively, when l = 0, to ∆r having no roots, or ∆r having two distinct real roots. As
we have already noted, there are always two distinct roots with opposite sign in the case
l > 0 of Kerr-de-Sitter which correspond to the cosmological horizons inside and outside
the singularity. Hence, in terms of roots the natural analogs for the Kerr-de Sitter metric
are:

— P has 4 distinct real roots (“Slow” Kerr-de Sitter),
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2.4. Fast, Extreme and Slow Kerr-de Sitter

— P has a complex root (“Fast” Kerr-de Sitter).

A further accommodating consequence of the necessary existence of two distinct real
roots is that we can distinguish between the above cases using the sign of ∆(P ). Indeed,
let us denote the roots of P by x1, x2, x3, x4 and assume, without loss of generality, that
x1 and x2 are both real and distinct.

From Proposition A.3.3 of appendix A.3 we can write (in C):

∆(P ) = (x1 − x2)2(x1 − x3)2(x1 − x4)2(x2 − x3)2(x2 − x4)2(x3 − x4)2.

From this expression we see that if x3 ∈ R, ∆(P ) ≥ 0 10. If, however, x3 = z ∈ C \R then
x4 = z̄, hence:

∆(P ) = (x1 − x2)2(x1 − z)2(x1 − z̄)2(x2 − z)2(x2 − z̄)2(2iℑ(z))2,

= −4ℑ(z)2(x1 − x2)2|x1 − z|2|x2 − z|2 < 0.

Therefore, P has two conjugate complex roots if and only if ∆(P ) < 0. We recall the
expression of ∆(P ) of the previous section:

∆(P ) = − 16
l10

(
27M4l2 + (a2l2 − 1)(a4l4 + 34a2l2 + 1)M2 + a2(a2l2 + 1)4

)
. (2.45)

The expression 27M4l2 + (a2l2 − 1)(a4l4 + 34a2l2 + 1)M2 + a2(a2l2 + 1)4 is a second order
polynomial in M2 whose discriminant is given by:

δ = γ3 = (y − (2 −
√

3))3(y + 2 +
√

3)3(y + 2 −
√

3)3(y − (2 +
√

3))3,

where y = al. From this factorisation we deduce the sign of δ given in table 2.2, and the
following cases:

(i) 0 ≤ al ≤ 2 −
√

3:

In this case ∆(P ) = −432
l8

(M2 − m2
−)(M2 − m2

+) where 0 ≤ m2
− ≤ m2

+. It follows
that if M2 ∈ [m2

−,m
2
+] then ∆(P ) ≥ 0 otherwise, ∆(P ) < 0.

(ii) 2 −
√

3 < al < 2 +
√

3:

Here ∆(P ) never vanishes for any value of M2. Since for M2 = 0, ∆(P ) < 0 and
∆(P ) is a continuous function of M2, ∆(P ) < 0 for all values of M2.

10. The discussion in the previous section shows that necessarily x4 ∈ R too.
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(iii) al ≥ 2 +
√

3:

∆(P ) = −432
l8

(M2 + m2
−)(M2 + m2

+) where 0 ≤ m2
+ ≤ m2

− Therefore, for all values
of M ≥ 0, ∆(P ) < 0.

Table 2.2 – Sign of δ

y = al

Sign of δ

0 2 −
√

3 2 +
√

3 +∞

+ 0 − 0 +

Combined with the results of the previous section and preserving the terminology
introduced at the beginning of this section, we have thus shown:

Proposition 2.4.4.

— “Slow” Kerr de Sitter is characterised by the following conditions on the parameters
(a, l,M) ∈ R∗

+ :
(i) al < 2 −

√
3,

(ii) M2 ∈]m2
−,m

2
+[ where m2

± = (1−a2l2)(a4l4+34a2l2+1)±
√
δ

54l2 .

— “Fast” Kerr-de Sitter corresponds to the cases:
▷ 0 ≤ al ≤ 2 −

√
3 and M2 ̸∈ [m2

−,m
2
+] where m2

± = (1−a2l2)(a4l4+34a2l2+1)±
√
δ

54l2 .
This is the case that most ressembles the usual fast Kerr spacetime.

▷ al > 2 −
√

3.

In the above proposition we see the black hole horizons exist on a de Sitter background
only under relatively strict conditions on the parameters, we have notably, for a given
value of Λ, upper and lower bounds on the mass, as well as a restriction on the rotation
parameter a of the black hole. Let us concentrate for a moment on the upper bound for
the mass for a given values of a, l, al < 2 −

√
3 of a slow KdS spacetime. According to

condition (ii), we must have:

M2 ≤ (1 − a2l2)(a4l4 + 34a2l2 + 1) +
√
δ

54l2 . (2.46)

Despite our assumption that a > 0, setting a = 0 and taking the square root furnishes a
well known result in Schwarzschild-de Sitter spacetime [SH99]:

M <
1

3
√

Λ
. (2.47)
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More generally, the map y 7→ (1−y2)(y4+34y2+1)+
√
δ(y), is well defined and continuous

for y ∈ [0, 2 −
√

3] and attains a maximum at y = 2 −
√

3. This yields a global bound
on the mass: M < C√

Λ where C = 4√
3

√
26

√
3 − 45 ≈ 0.4215. Studying how the expression

of the upper bound depends on a, it can be shown that in fact the minimum value is
attained for a = 0: rotating black holes can be slightly more massive than non-rotating
black holes and still maintain their horizon structure.

We conclude this section by addressing one last question regarding slow Kerr-de Sitter
black hole: can there be more than one horizon inside the singularity, i.e. in the region
r < 0? The answer is negative, as shown in the following lemma.

Lemma 2.4.2. We suppose a ̸= 0. In slow Kerr-de Sitter only one horizon lies in the
region r < 0.

Proof. It has already been noted that there must always be at least one negative root;
an even number of both positive and negative roots is excluded again by equation (iv) in
(2.21). The statement of the lemma is therefore equivalent to the fact that there cannot
be 3 negative roots. As usual, denote by x1, x2, x3, x4 the 4 roots of ∆r. By hypothesis,
they are all real. Suppose, without loss of generality, x1x2 < 0. It follows that x3x4 > 0
from equation (iv) of (2.21). Call P = x3x4 and S = x3 +x4. Equation (i) of (2.21) gives:
S = −(x1 + x2). Equation (iii) of (2.21) yields:

−A2

P
S − SP = −2m2,

which is equivalent to:
S = 2m2P

A2 + P 2 ≥ 0.

Therefore S = x3 + x4 is always positive and thus x3 and x4 are both positive.

2.4.3 Boyer-Lindquist blocks

We are now in a position to give a more precise description of the Boyer-Lindquist
blocks. We will do this first in the slow case, where there are four distinct roots, say,
r−−, r−, r+, r++ ordered as:

r−− < 0 < r− ≤ r+ ≤ r++.
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In table 2.3 we give the sign of ∆r as r varies and the chosen numbering for the Boyer-
Lindquist blocks. We also give the sign of the diagonal metric tensor elements gii. The
“•” means that the sign changes within the block. That gϕϕ > 0 for r > 0 is not clear
from the initial expression of gϕϕ given in table 2.1, however one can write:

gϕϕ =
(

(r2 + a2) + 2Mra2 sin2 θ

ρ2Ξ

)
sin2 θ

Ξ . (2.48)

r

∆r

Boyer
Lindquist

blocks

gtt

grr

gθθ

gϕϕ

g(V ,V )

g(W ,W )

−∞ r−− 0 r− r+ r++ +∞

− 0 + 0 − 0 + 0 −

V IV III II I

+ • + • +

− + − + −

+ + + + +

− • + + + +

+ − + − +

+ + + + +

Table 2.3 – Sign of ∆r and Boyer-Lindquist blocks

Up to now, we have not addressed the question of the time-orientation 11 of the man-
ifolds under consideration. The time-orientability of each Boyer-Lindquist block is clear
from table 2.3, so each Boyer-Lindquist block can separately become a spacetime. For
the usual Kerr metric and the Schwarzchild metric, the time parameter t coincides with
the proper time of a distant stationary observer in the limit r → ∞. In this case, time-

11. A time orientation of a Lorentzian manifold is a choice of a globally defined nowhere vanishing
non-spacelike continuous vector field. A vector field is said to be time-orientable if such a vector field
exists
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orientation of the Boyer-Lindquist block that lies beyond all black hole horizons can be
chosen naturally under the prescription that ∂t is future-pointing when non-space-like.
This interpretation of t fails for the Kerr-de Sitter metric, but we still have a number
of partial results. First, under the assumption that our visible universe is not beyond a
cosmological horizon and not between two black hole horizons, block II (cf table 2.3) is
identified as the most physically relevant block. On this block t is still a “time function”
in the following sense:

Lemma 2.4.3. On block II, the hypersurfaces “t = t0” are spacelike.

Proof. At each point p of such a surface the tangent space is given by the kernel of
dtp, or, equivalently (∇t(p))⊥. But, ∇t is timelike on block II ( minus axes ) since 12

g(∇t,∇t) = gtt = − gϕϕΞ4

sin2 θ∆θ∆r
. This also holds for points on the axes, as this expression

extends continuously to such points.

Corollary 2.4.1. Along any non-spacelike C1 curve α in block II, t ◦ α is strictly mono-
tonic.

The region in the Kerr-Boyer-Lindquist blocks where gtt > 0 is known as the “ergosphere”.
It has interesting physical properties explored in [ONe14] in the Kerr case, the most
notable of which being the possibility to extract energy from a Kerr black hole. In the
case of the Kerr-de Sitter metric it is no longer guaranteed that the ergosphere does not
cover all of block II, unless we impose further conditions:

Proposition 2.4.5. Suppose a2l2 < 1, then a sufficient condition for there to be an
interval I ⊂ R∗

+ such that gtt ≤ 0 when r ∈ I is that:

27M2l2 ≤ (1 − a2l2)3. (2.49)

Proof. Rewrite gtt as:

gtt = 1
ρ2Ξ2

a2 cos2 θ(l2a2 sin2 θ − 1)︸ ︷︷ ︸
≤0

+l2r
(
r3 + r

(a2l2 − 1)
l2

+ 2M
l2

) ,
12. Refer to lemma A.4.2,A.4.3 in appendix A.4
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a2l2 < 1, hence l2a2 sin2 θ ≤ 1, so the first term is always non-positive. The sign of the
second term is determined by that of the polynomial:

P = X3 +X
a2l2 − 1

l2
+ 2M

l2
,

P can become negative on R∗
+ if and only if there is a positive real root, hence its discrim-

inant must be positive. This is because if there is only one real root, it must be negative
as 2M

l2
> 0. The discriminant of P is given by:

∆(P ) = (1 − a2l2)3 − 27M2l2,

it is positive if and only if 27M2l2 ≤ (1 − a2l2)3 and in this case all roots are real, but
they cannot all be negative since their sum must vanish.

t is nevertheless a “function of time” and, even though there are cases where ∂t is
always space-like, its gradient always furnishes on block II a time-like vector field that
can be used to time-orient it. By analogy with the Kerr case, we choose to time-orient
block II by specifying that −∇t is future-pointing.

2.5 Maximal Kerr-de Sitter spacetimes

In this section we will cease to consider the Boyer-Lindquist blocks as separate space-
times and construct analytical manifolds containing isometric copies of these blocks, of
which the union is dense, and to which the Kerr-de Sitter metric extends analytically.
In order for these manifolds to be spacetimes they will be constructed in such a way to
ensure that they are time-orientable. The methods used here are adapted from [ONe14]
and are still applicable due to the remarkable algebraic decomposition of the Riemann
curvature tensor described in section 2.3.

2.5.1 KdS∗ et ∗KdS spacetimes

The first two analytical manifolds will be constructed by choosing coordinates for the
Boyer-Lindquist blocks in which one of the two null geodesic congruences generated by
the vector fields

N± = ±∂r + Ξ
∆r

V, (2.50)
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are coordinate-lines. Recall from proposition 2.3.1 that at each point p ∈ B of any Boyer-
Lindquist block B the rays generated by the vectors N±(p) define the principal null di-
rections. The geometric significance of these directions justifies using them to construct
an analytical extension.

Definition 2.5.1. We define KdS∗ coordinates by:

t∗ = t+ T (r),
r∗ = r,

θ∗ = θ,

ϕ∗ = ϕ+ A(r),

(2.51)

similarly, ∗KdS coordinates are defined by:

∗t = t− T (r),
∗r = r,
∗θ = θ,
∗ϕ = ϕ− A(r),

(2.52)

where T (r) =
∫ (r2 + a2)Ξ

∆r

dr and A(r) =
∫ a Ξ

∆r

dr.

2.5.2 KdS∗

Proposition 2.5.1. Let B be a Boyer-Lindquist block and A = Rt×Rr×{p±}; p± denote
the poles of the S2. Define: Φ∗ : B \ A −→ Rt∗ × Rr∗ × S2 by:

Φ∗(t, r, θ, ϕ) = (t+ T (r), r, θ, ϕ+ A(r)),

then Φ∗ is an analytic diffeomorphism of B \ A onto an open subset of Rt∗ × Rr∗ × S2.

Proof. That Φ∗ is analytic is clear; fix (t, r, θ, ϕ) ∈ B \ A, then the Jacobian matrix is
given by:

J(ϕ)(t, r, θ, ϕ) =


1 r2+a2

∆r
Ξ 0 0

0 1 0 0
0 0 1 0
0 aΞ

∆r
0 1

 .
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Thus, det J(ϕ)(t, r, θ, ϕ) = 1. It follows that Φ∗ is a local analytic diffeomorphism at each
point of B \ A. It suffices to show that Φ∗ is injective to conclude that it is a global
diffeomorphism. Injectivity is clear however, as, according to Definition 2.5.1:

Φ∗(r, t, θ, ϕ) = Φ∗(r′, t′, θ′, ϕ′) ⇔



t+ T (r) = t′ + T (r′),
r = r′,

θ = θ′,

ϕ+ A(r),= ϕ′ + A(r′),

⇔



t = t′,

r = r′,

θ = θ′,

ϕ = ϕ′.

(t∗, r, θ, ϕ∗) are therefore coordinates functions on B \ A

Lemma 2.5.1. The coordinate vector fields ∂t∗ , ∂r∗ , ∂θ∗ , ∂ϕ∗ are given on each Boyer-
Lindquist block by:

∂t∗ = ∂t, ∂r∗ = ∂r − Ξ
∆r

V,= −N− ∂θ∗ = ∂θ ∂ϕ∗ = ∂ϕ. (2.53)

Furthermore, in KdS∗ coordinates the line element can be written:

ds2 = gttdt∗2 + gθθdθ∗2 + gϕϕdϕ∗2 + 2
Ξdt∗dr∗ − 2a sin2 θ

Ξ dr∗dϕ∗ + 2gϕtdt∗dϕ∗. (2.54)

Corollary 2.5.1. On each Boyer-Lindquist block B the integral curves of N− are the
coordinate lines of r∗.

Inspecting the form of (2.54) and comparing with the discussion at the beginning of
section 2.3 we deduce:

Corollary 2.5.2. By analogy with the notations used in section 2.3, let:

Σ∗ = {(t∗, r∗, θ∗, ϕ∗) ∈ Rt∗ × Rr∗ × S2, r∗2 + a2 cos2 θ∗ = 0},

then the line element (2.54) extends analytically to all of Rt∗ × Rr∗ × S2 \ Σ∗ as a non-
degenerate metric tensor.

This last result leads us to define:

Definition 2.5.2. We call KdS∗ the analytical manifold Rt∗ ×Rr∗ ×S2\Σ∗ equipped with
metric tensor g∗ defined by (2.54) and time-oriented such that −∂r∗ is future-pointing.
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Remark 2.5.1. — Time-orientation is chosen here so that the integral curves (and co-
ordinate lines) of N− are future-oriented.

— It is consistent with the choice that −∇t is future-pointing on block II, since, using
(2.54) and Lemma A.4.3 in appendix A.4, it is easily seen that g∗(−∂r∗ ,−∇t) =
g∗(∂r∗ ,∇t) = − Ξ

∆r
(r2 + a2) < 0.

Define now the subsets B∗ of KdS∗ by the same inequalities as the corresponding
Boyer-Lindquist blocks B, then:

Lemma 2.5.2. Φ∗ has an analytic extension to a diffeomorphism of B onto B∗.

Proof. For α ∈ R, let Rα : S2 −→ S2 be the restriction of the rotation of angle α about
the z-axis in R3 to S2. The map ψ : Rr × S2 −→ S2 defined by ψ(r, q) = RA(r)(q) is
analytic everywhere except at values of r where ∆r = 0. Then:

Φ̃∗ :
B −→ B∗

(t, r, q ∈ S2) 7−→ (t+ T (r), r, ψ(r, q))
.

is the desired extension.

Corollary 2.5.3. Each Boyer-Lindquist block B can be identified isometrically with an
open subset of KdS∗.

The vector fields ∂t, ∂θ, ∂ϕ are, a priori, only well defined on each B∗, but, in view of
equation (2.53), ∂t∗ , ∂θ∗ , ∂ϕ∗ are analytic extensions of these fields to all of KdS∗. Hence,
we define ∂t, ∂θ and ∂ϕ by equation (2.53) on all of KdS∗.

The hypersurfaces H ∗
i defined by the equations r = r∗ = ri (i ∈ {−−,−,+,++}) are

now well-defined submanifolds of KdS∗, it is easy to show that, as is custom with black
hole horizons:

Proposition 2.5.2. Each H ∗
i is a totally geodesic null hypersurface of KdS∗. In partic-

ular, for p ∈ H ∗
i :

TpH
∗
i = V ⊥

p = span ((∂t)p, (∂θ)p, (∂ϕ)p)) = span (Vp, (∂θ)p, (∂ϕ)p)

We shall now address the question of the integral curves of N+ in KdS∗, the situation
is not symmetrical with that of N−, as, in terms of the KdS∗ coordinate fields:

N+ = ∂r∗ + 2Ξ
∆r

V.
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Thus, N+ is still undefined on the horizons Hi, moreover, N+ is not always future-pointing
since:

g∗(N+,−∂r∗) = −2ρ2

∆r

.

This can be remedied by considering reparametrisations of the integral curves of N+ that
are integral curves of n+ = ∆r

2ΞN+. The integral curves of n+ are all future-oriented since
g∗(n+,−∂r∗) = −ρ2

Ξ2 < 0.

Definition 2.5.3. On KdS∗ we will call:
1. “Ingoing principal null geodesics” the integral curves of the vector field N− extended

to all of KdS∗ by (2.53).
2. “Outgoing principal null geodesics” geodesic reparametrisations of the integral curves

of n+. These curves coincide on B∗ with the images of the principal null geodesics
of the Boyer-Lindquist blocks by Φ̃∗ ≡ i∗.

In figure 2.1, we give a schematic representation of KdS∗ spacetime that will be useful
in the following. The principal null geodesics are represented by oriented line segments;
horizontally, the “ingoing” principal null geodesics run from r = +∞ to r = −∞ - we
will say that they are “complete” -, vertically, the “outgoing” principal null geodesics are
confined within a given Boyer-Lindquist block. We have not represented the principal null
geodesics that are confined within the horizons.

Figure 2.1 – Schematic representation of KdS∗ spacetime: horizontally, the ingoing prin-
cipal null geodesics run unimpeded from r = +∞ to r = −∞, vertically, the outgoing
principal null geodesics are confined within a given Boyer-Lindquist block and on the
horizons.

2.5.3 ∗KdS

Repeating the above arguments, using instead ∗KdS coordinates, yields the following
results:
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Lemma 2.5.3.

1. On each Boyer-Lindquist block (∗t, ∗r, ∗θ, ∗ϕ) are well defined coordinate functions.

2. In these coordinates the line element can be written:

ds2 = gttd∗t2 + gθθd∗θ2 + gϕϕd∗ϕ2 − 2
Ξd∗td∗r+ 2a sin2 θ

Ξ d∗rd∗ϕ+ 2gϕtd∗td∗ϕ. (2.55)

This expression has an unique analytic extension to all points of R∗t×R∗r ×S2 \∗Σ.

3. The coordinate vector fields are:

∂∗r = ∂r + Ξ
∆r

V = N+, ∂∗t = ∂t, ∂∗θ = ∂θ, ∂∗ϕ = ∂ϕ. (2.56)

Proposition 2.5.3. Define the Lorentizan manifold ∗KdS to be the analytic manifold
R∗t × R∗r × S2 \ ∗Σ equipped with the metric ∗g defined by equation (2.55) and time-
oriented such that the globally defined vector field ∂∗r is future-pointing then:

1. The submanifolds ∗Hi of equations r = ri, i ∈ {−−,−,+,++} are totally geodesic
null hypersurfaces.

2. Defining ∗B by the same inequalities as the Boyer-Lindquist block B, then ∗B and B
are isometric, i.e. ∗KdS contains isometric copies of each Boyer-Lindquist block.

Definition 2.5.4. On ∗KdS we will call:

1. “Outgoing principal null geodesics” the integral curves of the vector field N+ ex-
tended to all of ∗KdS by (2.56).

2. “Ingoing principal null geodesics” geodesic reparametrisations of the integral curves
of the everywhere future-pointing vector field n− = ∆r

2ΞN−.

Figure 2.2 – Schematic representation of ∗KdS spacetime
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In figure 2.2, we give the corresponding schematic representation of ∗KdS. Again, the
principal null geodesics are represented by oriented line segments. Here though, horizon-
tally, are the outgoing principal null geodesics running from r = −∞ to r = +∞ and
vertically, the ingoing principal null geodesics confined within a single Boyer-Lindquist
block ∗B. Again, we have omitted the ingoing principal null geodesics trapped in the
horizon.

The asymmetric treatment of the outgoing and ingoing principal null geodesics shows
that ∗KdS and ∗KdS are certainly not the same spacetime. Nevertheless, there is a natural
isometry µ between ∗B and B∗ for each Boyer-Lindquist block B, in coordinates it can be
written:

µ(∗t, ∗r, ∗θ, ∗ϕ) = (∗t+ 2T (r), ∗r, ∗θ, ∗ϕ+ 2A(r)), (2.57)

from which we deduce that:
dµ(∂∗r) = ∂∗

r + 2Ξ
∆r

V.

Hence:
g∗(−∂r∗ , dµ(∂∗r )) = −2ρ2

∆r

.

Therefore, µ preserves time-orientation on blocks II and IV (see table 2.3) but reverses it
on blocks I, III and V.

We conclude this section defining two more spacetimes:

Definition 2.5.5. We define KdS∗′ and ∗KdS ′ to be the spacetimes obtained from KdS∗

and ∗KdS respectively by reversing time orientation.

Lemma 2.5.4. For each Boyer-Lindquist block B, the isometries ∗B −→ B∗′ and ∗B′ −→
B∗ defined in coordinates by (2.57) preserve time-orientation on blocks I, III and V, but
reverse it on blocks II and IV.

After reversing time-orientation, the principal null geodesics are now past-oriented.
Their orientation should be reversed so that they are future-oriented, but because this
changes the sign in front of ∂r in the original expression, we also adapt terminology: an
orientation reversed integral curve of ∂r∗ (resp. ∂∗r) will become an outgoing principal null
geodesics in KdS∗′ (resp. ∗KdS ′) and similarly for the integral curves of n±. The reason
for this is purely semantic, in the next section we will seek to extend the incomplete
outgoing principal null geodesics by gluing together along the Boyer-Lindquist blocks
combinations of the four manifolds of this section, the change of vocabulary ensures that
we always extend outgoing principal null geodesics using outgoing principal null geodesics.
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2.5. Maximal Kerr-de Sitter spacetimes

2.5.4 Maximal slow Kerr-de Sitter spacetime

In the previous section we constructed four isometric - but not identical - analytic
extensions of the KdS-Boyer-Lindquist blocks. In one case, ingoing principal null geodesics
are complete, and in the other outgoing principal null geodesics are complete. In this
section, we seek an analytical extension of these spacetimes such that all principal null
geodesics, save those that run into the singularity, are complete, i.e. a maximal extension
of these curves is defined on all of R. As for Kerr spacetime in [ONe14], the maximal
extensions by “gluing” together the aforementioned manifolds in an elaborate fashion.

By “gluing” two semi-Riemannian manifolds X and Y , we mean that we construct
a new manifold Q containing isometric copies of X and Y and equipped with a metric
extending that of both X and Y . A natural way of doing this is to specify two open
sets U ⊂ X and V ⊂ Y that are identified by an isometry ϕ : U −→ V , in this case we
denote the new manifold by X ∐

ϕ Y . It comes with two “canonical” embeddings ī : X −→
Q, j̄ : Y −→ Q and ī(X) ∩ j̄(Y ) = ī(U) = j̄(V ). A brief outline of the construction is
given in appendix A.5, however we note here that whilst most topological properties of
the new space Q follow directly from those of X and Y , separation is not guaranteed.
Nevertheless, we have a technical criterion- proved in appendix A.5 - that will suffice for
all cases encountered in the sequel:

Lemma 2.5.5. If X and Y are two manifolds and there is no sequence (xn)n∈N of points
in U converging to a point in Ū \U and such that ϕ(xn)n∈N converges to a point in V̄ \V ,
then Q is Hausdorff.

Throughout this section, we assume that the conditions of slow KdS as described in
section 2.4 are satisfied. In particular, we assume that ∆r has four distinct roots. Whilst
some of the more technical results in this section are independent of this hypothesis, the
gluing pattern is dependent of this choice.

Kruskal domains

Rather than directly gluing the manifolds KdS∗, ∗KdS and their orientation reversed
counterparts, the pattern is more conveniently described by first constructing smaller
manifolds, called “Kruskal domains”, from selected open sets of these manifolds. Four
such domains are required, one per horizon; they are illustrated in figure 2.3 and are
destined to be assembled by gluing along Boyer-Lindquist blocks sharing identical labels.
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Unprimed labels indicate that the blocks are time-oriented according to KdS∗, primed
labels are worn by blocks with the opposite time-orientation.

I' II'

III

(a) D(r++)

III II

III'II'

(b) D(r+)

III' IV'

IIIIV

(c) D(r−)

V IV

V'IV'

(d) D(r−−)

Figure 2.3 – Kruskal domains, the black square is the crossing-sphere (see section 2.5.4)

The Kruskal domains are also built in two stages. First, chosen open sets - that contain
selected Boyer-Lindquist blocks - are glued together using the isometries discussed at the
end of section 2.5.3; the result of this will be a manifold D0(ri). However, closer analysis
of the principal null geodesics contained within the horizons of KdS∗ and ∗KdS will show
that D0(ri) does not complete all principal null geodesics as required and will also need
to be extended.

Let us consider, as an example, D0(r++); the other domains can be constructed simi-
larly. D0(r++) is built according to figure 2.4. The details are as follows:

1. Begin with the manifold K1 consisting of the open set containing blocks I∗ and II∗

in KdS∗. The “outgoing” principal null geodesics of block I∗ are future-incomplete.
In order to extend them, glue the open set of ∗KdS ′ containing blocks ∗II and ∗I
onto K1 using the time-orientation preserving isometry of section 2.5.3 to identify
the blocks I∗ and ∗I. It is necessary to use ∗KdS ′ as opposed to ∗KdS to ensure that
the isometry preserves time-orientation. It may surprise the reader that, according
to our terminology, we are extending an outgoing principal null geodesic using an
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I' II'

III

I'

II

II I

I' II'

II'

I

Figure 2.4 – Building D0(r++)

ingoing principal null geodesic. This is not really the case, as inspection of figure 2.1
reveals that the “outgoing” principle null geodesic of block I, is actually a badly
named “ingoing” principle null geodesic, since dr∗(n+) ≤ 0 on block I.

We verify briefly on this example that the condition of Lemma 2.5.5 is satisfied.
Here the coordinate expression of ϕ : I∗ −→ ∗I is

ϕ(t∗, r∗, θ∗, ϕ∗) = (t∗ − 2T (r∗), r∗, θ∗;ϕ∗ − 2A(r∗)).

Suppose that (xn)n∈N = (t∗n, r∗
n, θ

∗
n, ϕ

∗
n) is a sequence of points in U = I∗ converging

to a point on the horizon r∗ = r++, in particular the sequence (t∗n)n∈N has a finite
limit, but |T (r)| −→

r→r++
∞ so (ϕ(xn))n∈N cannot converge.

2. Call K2 the manifold obtained after step 1. We extend the outgoing principal null
geodesics of block II in the same way, except that we use ∗KdS, since on block II
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time-orientation is preserved by the isometry of section 2.5.3.

3. Complete the manifold K3 resulting from steps 1 and 2 by gluing the open set of
KdS∗′ containing blocks I’ and II’ onto K3 identifying, using the isometries of 2.5.3,
I’ and II’ with those contained in K3.

Crossing spheres

Our ambition is to construct a spacetime in which all principal null geodesics are
complete (except those that run into the singularity). Until now, we have payed very little
attention to those which are trapped in the horizons. To fix notations, consider KdS∗, but
this discussion also holds with very minor modifications in ∗KdS. Recall from section 2.5.2
that outgoing principal null geodesics are defined as geodesic reparametrisations of the
integral curves of n+ = ∆r

2Ξ ∂r∗ +V . For any point p on a horizon H , n+(p) = V (p) ∈ TpH .

Lemma 2.5.6. Let i ∈ {−−,−,+,++}, then for any p ∈ Hi:

(∇V V )|p = 1
Ξ
(
ri −M − l2ri(2r2

i + a2)
)
V.

Lemma 2.5.7. Call ki = ri−M−l2ri(2r2
i +a2)

Ξ , i ∈ {−−,−,+,++} then:

k++ = − l2

2Ξ(r++ − r−−)(r++ − r+)(r++ − r−) < 0, (2.58)

k+ = l2

2Ξ(r+ − r−−)(r++ − r+)(r+ − r−) > 0, (2.59)

k− = − l2

2Ξ(r− − r−−)(r++ − r−)(r+ − r−) < 0, (2.60)

k−− = l2

2Ξ(r++ − r−−)(r+ − r−−)(r− − r−−) > 0. (2.61)

Proof. Follows immediately from the relation: ri −M − l2ri(2r2
i + a2) = 1

2
∂
∂r

∆r

∣∣∣
r=ri

after
factorisation of ∆r: ∆r = −l2

∏
i

(r − ri).

Corollary 2.5.4. Let i ∈ {−−,−,+,++}, then, if ri is a root with multiplicity > 1 of
∆r, then for any p ∈ Hi:

(∇V V )|p = 0.

Proposition 2.5.4.
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2.5. Maximal Kerr-de Sitter spacetimes

1. On horizons arising from a root of multiplicity > 1 of ∆r, the integral curves of V
are complete.

2. On the other horizons the integral curves of V are not complete.

Proof. For the first point, according to Corollary 2.5.4 the integral curves of n+ are already
geodesically parametrised. Furthermore, since V is a constant linear combination of the
coordinate fields ∂t∗ , ∂ϕ∗ , its integral curves are complete (i.e. they can be extended so
that the interval of definition is R).

Assume now that ri is a simple root of ∆r, then according to the above: ki ̸= 0, and
the integral curves of n+ are not geodesically parametrised. A generic integral curve of
n+ on Hi is given in KdS∗ coordinates by:

γ(s) = ((r2
i + a2)s+ t∗0, ri, θ0, as+ ϕ∗

0), s ∈ R.

Since ∂ϕ∗ and ∂t∗ are global Killing fields on KdS∗, it suffices to consider the case where
t∗0 = ϕ∗

0 = 0. When geodesically parametrised and the affine parameter chosen so that
γ̃ = γ ◦ s(λ) is future-oriented, we have:

γ̃(λ) =
(
(r2
i + a2)k−1

i ln(kiλ), ri, θ0, ak
−1
i ln(kiλ)

)
, kiλ > 0, (2.62)

which cannot be extended though λ → 0.

Remark 2.5.2. — On KdS∗′ where orientation is reversed, the future-oriented geodesic
parametrisation of the integral curves is:

γ̃(λ) =
(
(r2
i + a2)k−1

i ln(−kiλ), ri, θ0, ak
−1
i ln(−kiλ)

)
, kiλ < 0. (2.63)

— The formulae for ∗KdS et ∗KdS ′ are obtained by the substitution:

t∗ → ∗t, ϕ∗ → ∗ϕ.

Sending λ → 0 in formulae (2.62),(2.63), it would seem that γ̃(λ) approaches a point
that would be located at the center of each of the diagrams of figure 2.3. We now seek to
construct an analytic extension D(ri) of each D0(ri) that contains such a limit point, this
will be achieved by building a new system of coordinates.
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Definition 2.5.6.

A(r) = a

2κ−−
ln |r − r−−| − a

2κ−
ln |r − r−| + a

2κ+
ln |r − r+| − a

2κ++
ln |r − r++|,

T (r) = r2
−− + a2

2κ−−
ln |r − r−−| −

r2
− + a2

2κ−
ln |r − r−| + r2

+ + a2

2κ+
ln |r − r+|

−
r2

++ + a2

2κ++
ln |r − r++|,

κi = sgn(ki)ki, i ∈ {−−,−,+,++}.

The proofs of the following technical lemmata are left to the reader:

Lemma 2.5.8. For each i ∈ {−−,−,+,++}, A(r) − a

r2
i + a2T (r) is analytic at ri.

Lemma 2.5.9. Let i ∈ {−−,−,+,++}: On any Boyer-Lindquist block (minus points on

the axis A), the functions (∗t, t∗, θ, ϕi), where ϕi = 1
2

(
∗ϕ+ ϕ∗ − a

r2
i + a2 (∗t+ t∗)

)
form

a coordinate chart.

We specialise now to D(r++):

Definition 2.5.7. Define maps U++, V ++ on D(r++) by:

On I’ :


U++ = − exp

(
κ++∗t
r2

+++a2

)
,

V ++ = exp
(

− κ++t∗

r2
+++a2

)
,

On II :


U++ = − exp

(
κ++∗t
r2

+++a2

)
,

V ++ = − exp
(

− κ++t∗

r2
+++a2

)
,

On II’ :


U++ = exp

(
κ++∗t
r2

+++a2

)
,

V ++ = exp
(

− κ++t∗

r2
+++a2

)
,

On I :


U++ = exp

(
κ++∗t
r2

+++a2

)
,

V ++ = − exp
(

− κ++t∗

r2
+++a2

)
.

Recall that on I,I’ r > r++ and on II,II’ r+ < r < r++.

Lemma 2.5.10.

— U++, V ++, θ and ϕ++ have analytic extensions to all of D0(r++) \ {axis points}
(that we will denote by the same symbols). Furthermore η++ = (U++, V ++, θ, ϕ++)
is a coordinate system on D0(r++) \ {axis points}.

— η++ has an analytic extension to a diffeomorphism of D0(r++) onto R2\{(0, 0)}×S2.

— r has an analytic extension to all of RU++ × RV ++ × S2.
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— r 7→ G++(r) = r−r++
U++V++

is an analytic function of r ̸∈ {r−, r+, r−−} that never
vanishes.

Proposition 2.5.5. In the coordinates η++ of D0(r++) \ {axis points}, the line element
can be expressed as:

ds2 =∆r(r2
++ + a2)G++2(r)a2 sin2 θ

4κ2
++(r − r++)(r2 + a2)Ξ2ρ2 (r + r++)

(
ρ2

r2 + a2 + ρ2
++

r2
++ + a2

)
(2.64)

×
(
V ++2dU++2 + U++2dV ++2)

+ gθθdθ2 + g2
ϕϕdϕ2

+ ∆r(r2
++ + a2)2G++2(r)

2κ2
++(r − r++)ρ2Ξ2

(
ρ4

(r2 + a2)2 + ρ4
++

(r2
++ + a2)2

)
dU++ dV ++

+ a sin2 θG++(r)
ρ2Ξ2κ++

(
∆θ(r + r++)(r2 + a2)

−
∆rρ

2
++

r − r++

)
dϕ++

(
V ++dU++ − U++dV ++

)
+ ∆θa

2 sin2 θ(r + r++)2

4κ2
++ρ2Ξ2

(
V ++dU++ − U++dV ++

)2
,

where ρ2
++ = r2

++ + a2 cos2 θ.

The above expression extends analytically to all of (RU++ ×RV ++) ×S2 and it is straight-
forward to verify that it is non-degenerate at points of {(0, 0)} × S2. This concludes
the construction of D(r++) which is defined as (RU++ × RV ++) × S2 equipped with the
metric (2.64). Similar expressions for the metric can be obtained on the other Kruskal
domains. We can now check that these extra points really do enable the extension of in-
complete principal null geodesics contained in the horizons by welding together those from
the different Boyer-Lindquist blocks. Recall from equation (2.63) the geodesic parametri-
sation of a generic integral curve, expressed in KdS∗ coordinates, contained in the horizon
Hi and coming from KdS∗′ (see figure 2.4):

γ̃(λ) =
(
(r2

++ + a2)k−1
++ ln(−k++λ), ri, θ0, ak

−1
++ ln(−k++λ)

)
, λ > 0,
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this curve is past-incomplete and its expression in Kruskal coordinates is:

U++ = 0,
V ++ = −k++λ,

θ = θ0,

ϕ++ = − lim
r→r++

A(r) − a

r2
++ + a2T (r),

λ ∈ R∗
+, (2.65)

from these expressions we see that when λ → 0, γ approaches a point on the crossing-
sphere (U++ = V ++ = 0).

If we consider now a similar curve in the horizon coming from KdS∗, then its geodesic
parametrisation in KdS∗ coordinates is, from (2.62):

γ̃(λ) =
(
(r2

++ + a2)k−1
++ ln(k++λ), r++, θ0, ak

−1
++ ln(k++λ)

)
, λ < 0.

This curve is future incomplete; converting to Kruskal coordinates:

U++ = 0,
V ++ = −k++λ,

θ = θ0,

ϕ++ = − lim
r→r++

A(r) − a

r2
++ + a2T (r),

λ ∈ R∗
−. (2.66)

The curves clearly analytically extend one another to form a complete geodesic. Through
this example, we see that the role of the crossing-sphere (U++ = V ++ = 0) really is to
join together the two “vertical” horizons in figure 2.4 to form a single null hypersurface of
equation U++ = 0. The results are similar when considering the principal null geodesics
in the “horizontal” horizons of figure 2.4.

Building maximal slow Kerr-de Sitter KdSs

We will now describe how to combine the Kruskal domains of section 2.5.4 to build the
maximal slow Kerr-de Sitter spacetime KdSs; the gluing pattern is illustrated in figure 2.5.

To realise the gluing, begin with the two manifolds K1, K2 defined by:

— K1 is the manifold obtained by considering two sequences (D+
i )i∈Z, (D−

j )j∈Z of iso-
metric copies of D(r+) and D(r−) respectively. Define: X =

∐
i

D+
i , Y =

∐
j

D−
j . We
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II

II'

Figure 2.5 – Gluing pattern to construct KdSs; the roman numeral labels indicate which
Boyer-Lindquist block is used for the gluing

introduce some notations useful in the sequel:

— For each k ∈ Z denote by ik+ : D+
k ≃ D(r+) → X and ik− : D−

k ≃ D(r−) → Y

the canonical injections.

— For any Boyer-Lindquist block B ⊂ D(r±), B±
i will denote the image of that

block by the isometry D(r±) ≃ D±
i .

— B±
i = ii±(B±

i ).

Define now 13: K1 = X
∐
ϕ Y where ϕ : ∐i IIIi ∪ III ′

i → Y is constructed using the
universal property of coproducts from the maps:

ϕi : IIIi ∪ III ′
i ⊂ D+

i −→ IIIi ∪ III ′
i−1 ⊂ Y,

which, when restricted to IIIi (resp. III ′
i) and expressed in Boyer-Lindquist coor-

dinates, is simply the identity map.

— K2 = (
∐
i

D++
i )

∐
(
∐
j

D−−
j ) is the disjoint union of the sequences (D++

i )i∈Z, (D−−
j )j∈Z

of isometric copies of D++
i ≃ D(r++) and D−−

j ≃ D(r−−).

As illustrated in section 2.5, KdSs can be built from K1 and K2 by gluing infinitely

13. see appendix A.5
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many copies of these manifolds along blocks with the same label. More precisely, consider
two sequences (Mi)i∈Z and (Nj)j∈Z of manifolds. This time, for each i ∈ Z, Mi (resp.
Ni) is an isometric copy of K1 (resp. K2). Define X̃ = ∐

iMi, Ỹ = ∐
jMj and denote by

Ii : Mi → X̃ and Ji : Ni :→ Ỹ the canonical injections. KdSs will then be X̃ ∐
ψ Ỹ for a

well chosen isometry ψ.
ψ can be specified in several stages from maps (ψ± i

k )(i,k)∈Z2 :

ψ+ i
k : IIk ∪ II ′

k ⊂ D+
k −→ II++

(i,k) ∪ II ′++
(i−1,k) ⊂ Ỹ ,

ψ−, i
k : IV ′

k ∪ IV ′
k ⊂ D−

k −→ IV ′++
(i,k) ∪ IV −−

(i−1,k) ⊂ Ỹ ,

where, II++
(i,k) = Ji ◦ i++

(i,k)(II) and i++
(i,k) is the canonical injection of D++

k into Ni; the
other sets are defined similarly. Again, when restricted to a given Boyer-Lindquist block
and expressed in Boyer-Lindquist coordinates, these are just the identity maps. Using a
natural generalisation of point 3 of proposition A.5.1 in appendix A.5, for every i ∈ N
this specifies a map:

ψi :
⋃
k ∈Z

ī
(i,k)
+ (IIk ∪ II ′

k) ∪ ī
(i,k)
− (IVk ∪ IV ′

k) ⊂ Mi → Ỹ .

These maps, using the universal property of coproducts, define together an isometry:

ψ :
∐
i∈Z

⋃
k ∈Z

ī
(i,k)
+ (IIk ∪ II ′

k) ∪ ī
(i,k)
− (IVk ∪ IV ′

k) ⊂ Mi → Ỹ .

2.5.5 Maximal extreme and fast KdS spacetimes

Straightforward adaptations of the techniques of the previous section enable us to
construct the maximal extreme and fast KdS spacetimes. For the extreme spacetimes, as
discussed in Section 2.4, there are three cases: r+ = r−, r++ = r+ or r++ = r+ = r−.

KdS1
e : r+ = r−

We begin with the case where the two black hole horizons coincide and in which
the Boyer-Lindquist block III disappears. The Kruskal domains D(r−−) and D(r++) are
unchanged, but the domains D(r+) and D(r−) are to be replaced by the domains I1 and
I2 given in figure 2.6. The form of these domains can be understood from the fact that
the horizon H+ now arises from a double root and the principal null geodesics trapped in
it are complete; in particular there are no crossing spheres on the double horizons. The
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II' IV'

II' IV'

(a) I1

IV II

IV II

(b) I2

Figure 2.6 – Kruskal domains

slightly simpler gluing pattern is illustrated in figure 2.7. As before, the roman numeral
labels indicate the blocks that are identified.

Figure 2.7 – Gluing pattern for KdSe
r+ = r−

KdS2
e : r+ = r++

The second case is when the cosmological horizon r++ coincides with the outer black
hole horizon r+. Here the Kruskal domains D(r−−) and D(r−) are unchanged and the
remaining blocks are replaced by the domains illustrated in figure 2.8. The stranger gluing
pattern is illustrated in figure 2.9.

KdS3
e : r++ = r+ = r− = x

When ∆r has a triple root x, we saw previously that all the horizons in the region
r > 0 coincide; Boyer-Lindquist blocks II and III consequently vanish. Contrary to the
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I

III

IIII

(a) I1

I' III'

I'

III'

(b) I2

Figure 2.8 – Kruskal domains

Figure 2.9 – Gluing pattern for KdS2
e

r++ = r+

other cases, only two Kruskal domains are required to construct a maximal extension:
the domain D(r−−), as illustrated in 2.3, and the domain D0(x) ≡ D(r++) illustrated in
figure 2.10.

Diagram 2.10 has a striking ressemblance to that of D(r++) in figure 2.3, but is
profoundly different due to the absence of the crossing sphere. Hence, whilst correctly
depicting the assembly process leading to D0(x), it is misleading for the interpretation of
the geometry. In particular, like for the double horizons, Kruskal coordinates do not have
analytic extensions to the whole domain.

As expected, the gluing pattern for KdS3
e , illustrated in figure 2.11, is much simpler

than in the other cases due to the fewer number of horizons and Boyer-Lindquist blocks.
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I' IV'

IIV

Figure 2.10 – D0(x) ≡ D(r++)

IV

IV'

Figure 2.11 – Gluing pattern for KdS3
e

r++ = r+ = r− = x r−− = 3x

Maximal Fast KdS spacetimes

This final case, where ∆r has only two simple real roots r−− and r++, is in all points
analogous to slow Kerr-spacetime as presented in [ONe14]; the main qualitative difference
is that time orientation is reversed. There are only two Kruskal domains, D(r++) and
D(r−−) as illustrated in figure 2.3, with the exception that, due to the absence of blocks
II and III , labels II and II ′ in figure 2.3 should be replaced by IV and IV ′ respectively.
The gluing pattern is identical to that in figure 2.11.

2.6 Conclusion

The aim of this rather technical note was to give a detailed mathematical discussion
regarding the construction of maximal analytical extensions to the Kerr-de Sitter solution
to Einstein’s equation with cosmological constant, as well as a review of the basic geomet-
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ric properties of these spacetimes. The latter discussion can be found in Section 2.3. To
the best of the author’s knowledge, in existing literature, the construction is only briefly
commented upon and is not carried out explicitly as in Section 2.5.

Section 2.4 is devoted to the study of the roots of the polynomial ∆r in terms of
the parameters (a, l,M), and hence, the horizon structure of the blackhole. The referees
brought to the attention of the author that similar discussions, although less mathemat-
ical, are present in earlier publications, namely [SS04] for Kerr-de Sitter and [SH00] for
the more general situation of Kerr-Newmann black holes on a background with non-zero
cosmological constant.
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Chapter 3

AN ANALYTICAL SCATTERING THEORY

FOR MASSIVE DIRAC FIELDS IN EXTREME

KERR-DE SITTER SPACETIME

3.1 Preamble

In this chapter, we will study the Dirac equation near an extreme Kerr-de Sitter
blackhole. More specifically, we are interested in the case where the two blackhole hori-
zons coincide (see [Bor18, Proposition 4]) to form what we will call a double horizon. In
physics, the Dirac equation describes free spin-1/2 particles, like the electron. Although
physicists are more interested in the second quantised version, we study here the classical
equation. We also consider the equation on a fixed geometric background, therefore ig-
noring the retroaction of the particle on the gravitational field; this is known as the linear
approximation. Our fields will evolve in a region B situated between the double horizon
and the cosmological horizon. Both will be treated as asymptotic regions: no boundary
conditions will be set there. The choice of this particular region B is motivated by a
number of interesting properties that lead us to suspect that it was possible to adapt and
generalise the methods in [NH04; Dau10] in order to construct a scattering theory. On
one hand, there is a global Killing field ∂

∂t
on B associated with a function t whose level

hypersurfaces are spacelike and isometric. This means that we can assimilate B to the
direct product R × Σ where Σ is a fixed Riemannian 3-fold, and reformulate the Dirac
equation as an evolution problem on Σ. An advantage of Dirac fields, as opposed to Klein-
Gordon fields, is that despite superradiance due to the rotation, there is still a conserved
current leading to a natural norm (and inner product) on space-like slices and giving the
necessary framework for spectral methods.

The setting is hence as follows: we have a Hilbert space H and a self-adjoint operator
H on H with dense domain D(H). Near the horizons, H intuitively approaches a simpler
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operator H0; our aim is to understand to what extent this comparison is meaningful. More
precisely, we seek to show the existence of strong limits of the following type:

s− lim
t→+∞

eiH0te−iHt ≡ Ω+. (3.1)

Ω+ is known as a wave operator; when it exists, it satisfies for any ϕ0 ∈ H :
∥∥∥e−iH0tΩ+ϕ0 − e−iHtϕ0

∥∥∥ −→
t→+∞

0.

Therefore, as long as we replace the initial data ϕ0 by Ω+ϕ0, we can use H0 to describe the
solution in the limit t → +∞. In general, Ω+ will not be defined on all of H . At best, it will
be defined on the subspace Hac composed of all vectors x ∈ H whose spectral measure
µx(S) = (E(S)x, x) is absolutely continuous with respect to the Lebesgue measure. In our
particular case, the Dirac equation is fully separable and the existence of the cosmological
horizon excludes the possibility for any discrete spectrum [BC09; BC10]. Moreover, via
Mourre theory [Mou81] 1, we will show that there is no singular continuous spectrum.
These facts imply that: H = Hac.

Nonetheless, we will not be able to prove the existence of (3.1) directly, and will
need to adjust the definition of Ω+ to take into account some long-range effects. This
is because the usual elementary methods to prove the existence of the wave operators
rely on the assumption that H −H0 is short-range in a neighbourhood of the asymptotic
regions, which is not satisfied near the double horizon. Furthermore, the rotation of the
blackhole adds a certain amount of anisotropy to the picture. We will show that all of
these difficulties can be overcome through several intermediate comparisons and an ad
hoc decomposition of the Hilbert space, which, surprisingly, enables us to reduce our
problem to a spherically symmetric one. Mourre theory will play an important role in
this part of the proof, since it will enable us to establish so-called « asymptotic velocity
estimates » [SS88; GF98] which are essential in the proof of the existence of some of our
intermediate wave operators. Last of all, at the double horizon, we will need to slightly
modify H0 to compensate for the fact that H−H0 is long range there. To this end, we will
perform a Dollard type modification [DV66] which consists in incorporating to eitH0 the
time evolution of the Coulomb potential terms that obstruct the existence of the classical
wave operators.

An important prerequisite underlying the techniques used in this part of the work

1. see also Section 3.5
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is the ability to construct a good functional calculus. Formulae like that of Helffer-
Sjöstrand [HS87] are key, for instance, in showing that some of the operators we study
are compact. This perspective was particularly elucidating whilst studying [AMG96]; a
key reference for the techniques in the main text.

The following text is in a large part taken from a prepublication [Bor20] submitted
for publication in the Annales de l’Institut Fourier. I have additionally included in the
preamble a short discussion on the geometry of Dirac fields.

3.2 A short note on spinors and spin structures

The Dirac equation, in itself, is a fascinating mathematical object. Before our pre-
sentation of the analytical scattering theory in extreme Kerr-de Sitter spacetime, it is
worth inspecting some of the geometry behind it. The first feature we should point at
is the nature of the unknown. The Dirac field, or spinor, is different in nature from the
tensor fields that appear in most equations in Physics, indeed, they do not correspond
to a representation of the proper Lorentz group SO+(1, 3), but rather of a particular 2
leaf covering 2, Sp(1, 3), which, due to an accidental isomorphism in dimension 4 can be
identified with SL(2,C).

The exceptional isomorphism can be described as follows: first we identify R4 with the
vector space of 2 × 2 Hermitian matrices via:

x0

x1

x2

x3

 7→

 x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

 = x,

The relation:
Λ(A)x = AxA∗, A ∈ SL(2,C), A∗ = tĀ, (3.2)

then defines a representation of SL(2,C). One can show that Λ maps SL(2,C) onto
SO+(1, 3) and that its kernel is {−1, 1}.

The group Sp(1, 3) is defined as a subgroup of the group of invertible elements of the
Clifford algebra Cl1,3(R). In brief, Cl1,3(R) is the « most general » real algebra with unit

2. which is simply connected so it is in fact the universal covering
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containing R4 such that for any v ∈ V ,

v2 = η(v, v) · 1, η(v, v) = −v2
0 +

3∑
i=1

v2
i .

Sp(1, 3) is the identity component of the group generated by the set:

{v1 . . . v2p, p ∈ N, vi ∈ R4, η(vi) = ±1}.

The geometric explanation to this definition is that if v ∈ R4 with η(v, v) = ±1, then v is
invertible in the algebra and the inverse is given by v−1 = v

η(v,v) . Consequently the map
x ∈ R4 7→ −vxv−1 is an endomorphism of R4 and:

−vxv−1 = −vx v

η(v, v) = x− 2η(v, x)
η(v, v)v.

Hence, x 7→ −vxv−1 is the reflection about the plane orthogonal to v. Since such reflec-
tions generate O(1, 3), after correctly generalising x 7→ −vxv−1 to more general elements
of Cl1,3(R)×, we have a way of reproducing O(1, 3). Restricting to an even number of
factors, we get SO(1, 3). The important point is that the algebra multiplication has a
strict relationship with the metric η.

A spinor representation is a complex representation of Sp(1, 3) induced by a repre-
sentation of the Clifford algebra, Cl1,3(R). The isomorphism SL(2,C) ∼= Sp(1, 3), means
that 3 it is not necessary for us to delve deeper into this side of things, and we can just
think of spinors as corresponding to complex representations of SL(2,C). The link between
SL(2,C) and SO+(1, 3) is what justifies the point of view that these spinor representa-
tions are in some sense representations of SO+(1, 3). For our needs, the most important
representations are:

- 2-spinors : the fundamental representation ρf de SL(2,C),

- pointed 2-spinors : the representation ρfc : A 7→ A,

- Dirac spinors : the direct sum of the dual representation to ρf and ρfc,

- complexified vectors : the product representation ρf ⊗ ρfc.

In order to speak of spinor fields on an oriented Lorentzian manifold (M, g), we need to
construct vector bundles corresponding to these spinor representations. This should be

3. much to my dismay
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done in such a way that the Clifford algebra behind the spin representation, corresponds
to the fibrewise metric of each tangent space. The solution involves a « reduction » 4 of the
positive orthonormal frame bundle F0(M) that lifts in each fibre SO+(1, 3) to SL(2,C).
The precise definition, in 4 dimensions, is as follows:

Definition 3.2.1. Let M be a smooth manifold of dimension 4, a spin structure is
an SL(2,C)-principal fibre bundle (S(M), πs) over M and a fibre bundle morphism
λ : S(M) −→ F0(M) into a reduction of L(TM) to a SO+(1, 3)-principal fibre bun-
dle over M , (F0(M), π), such that for any s ∈ S(M), and g ∈ SL(2,C):

π(λ(s)) = πS(s), (3.3)

λ(sg) = λ(s)Λ(g), (3.4)

where the morphism Λ : SL(2,C) −→ SO+(1, 3) is defined by Equation (3.2).

The definition can be generalised to arbitrary dimension and signature (p, q) but this
requires a little more theory than we can afford to explore here. We refer the interested
reader to [Fri00; LM89]. We have also chosen to present the metric structure (hidden in
the bundle F0(M)) as derived from the spin structure. In practice, however, the metric
structure, and by extension, the bundle F0(M), is already given in advance and we seek a
spin structure compatible with it. This problem can always be solved locally, for instance,
in a local bundle chart of the bundle F0(M), however, there may be an obstruction to
a global solution [Ger68; Ger70]. For our needs, the following result of Geroch [Ger68;
Ger70] will be sufficient:

Theorem 3.2.1. An orientable and globally hyperbolic 4-dimensional spacetime has a
spin structure.

Unfortunately, a spin structure is generally not unique, see for example the n-spheres [Tra93].
The importance of this choice is however a global question and will not concern us.

We should mention some consequences of Definition 3.2.1. First of all, the Lie group
homomorphism Λ induces a Lie algebra isomorphism between sl2(C) and so1,3(R), hence,
a connection on either one of the bundles S(M) or F0(M) automatically determines one
on the other: S(M) will be systematically assumed to be equipped with the connection
induced by the Levi-Civita connection on F0(M).

4. The terminology in English is unfortunate, the French word « élargissement », describes better the
situation we consider here...
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If a 4-dimensional Lorentzian manifold M has a spin-structure, « spinor » bundles are
defined as associated vector bundles to (S(M), λ). We will write S and S′ for the bundles
corresponding respectively to the 2-spinor and pointed 2-spinor representations. The fibre
bundle morphism λ guarantees the compatibility of S(M) with the Lorentzian structure
of the base M by inducing a vector bundle isomorphism:

S ⊗ S′ ∼= C ⊗ TM.

When using the abstract index notation (cf. Paragraph 1.1.1), sections k and χ of S
and S′ respectively will be written kA, and χA

′ . There is also an anti-linear isomorphism
between S and S′, obtained by factorising complex conjugation. We will write:

kA = k
A′
.

Somewhat abusively, the inverse map will be written in the same way: χA′ = χA.

Last of all, there is a canonical linear map:

ε : Γ(S) ∧ Γ(S) → C∞(M),

written εAB and satisfying gab = εABεA′B′ , where g is the metric tensor on M . In each
of the fibres of S it restricts to a symplectic form. Just like a metric, εAB can be used to
identify S to its dual:

kA 7→ kAεAB ≡ kB.

Due to the fact that it is anti-symmetric, we need to be a little more careful when raising
and lowering indices, for example:

kA = εABkB = −kBεBA,

kB = kAεAB = −εBAkA,

δBC = ε B
C = εACε

AB = −εACεBA = −εB C .

The above properties of spin structures, as well as the close relationship with the bundle
F0(M) encourage us to think of S(M) as analogous to a « square root » of F0(M). In
fact, in [PR84], Penrose argues that the spin structure is in some sense more fundamental
than F0(M). Elementary particles like electrons or quarks seem to be spinorial, so, if
General Relativity has any part to play in a quantum theory of gravity, a spin structure
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is a pre-requisite. Spin structures are also topologically more restrictive than metrics,
although Geroch’s result points out that the restriction is transparent for many physically
reasonable metrics. Nevertheless, we could imagine starting out with SL(2,C) ∼= Sp(1, 3)
principal fibre bundle S(M) over a manifold M and seeking fibre bundle morphisms λ
from S(M) to the frame bundle L(TM) over the base. If we find such a λ, we can then
identify the image as a positive orthonormal frame bundle F0(M), then deduce the metric
and orientation from it; which indicates that all the essential information of the spacetime
is encoded in the spin structure.
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Scattering theory for Dirac fields near
an Extreme Kerr-de Sitter black hole

The following is a modified version of the author’s final preprint of the eponymous
article submitted to Annales de l’Institut Fourier in May 2020

3.3 Introduction

Over the past two decades or so there has been quite a bit of mathematical interest
in scattering theories for particles in black-hole type geometries. This is useful for the
understanding of these geometries and the detection of black holes but also in the study
of Quantum Field Theory on curved spacetimes, see for example [DMP11; GHW20].

For rotating black holes, due to super-radiance, it is well known that the usual energy
functional of integer spin particle fields, described for instance by the wave or Klein-
Gordon equation, is no longer positive-definite, this leads to obvious technical difficulties
that have nevertheless been overcome in a handful of situations, such as the Klein-Gordon
equation on (De Sitter) Kerr spacetimes [GGH17; Häf03], the wave equation on Kerr
spacetime [DRS14] or the Maxwell equation on the Reissner-Nordström de-Sitter space-
time [Mok16].

On the other hand, for Dirac fields, there is still a conserved current which leads
to a natural Hilbert space framework adapted to a spectral theory approach. Scattering
theories for massive or massless Dirac fields have been constructed in this manner in the
exterior region of Reissner-Nordström, slow Kerr and Kerr-Newman black holes [Dau04;
NH04]. More recently, there has been interest in non-asymptotically flat backgrounds
such as Schwarzschild-de Sitter [Ide16], slow Kerr Newman-de Sitter [DN16] and slow
Kerr-Newman-AdS [BC10] black holes.

In this paper we study the case of an extreme Kerr-de Sitter black hole in a region
situated between what we will refer to as a “double” horizon and a usual “simple” one
(the cosmological horizon). The “double” horizon is the hypersurface resulting from the
coincidence of the two inner black hole horizons 5, and differs quite significantly from
the exterior horizon of, for instance, Kerr spacetime. The extreme case is of particular
interest for the understanding of mechanisms behind stability/instability of black hole

5. which occurs for special choices of the parameters of the family
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type spacetimes as it presents features of both types. This is analysed thoroughly in the
case of an Extreme Reissner-Nordström black hole in [Are11a; Are11b], and complemented
by the remarks in [BS07] on the asymptotic behavior to the wave equation. Regarding the
Dirac equation, an integral representation of the Dirac progagator in the extreme Kerr
metric is derived in [BF13]. Our main theorem, Theorem 3.7.1, formulated in Section ??,
is the asymptotic completeness of the Dirac operator in an extreme Kerr-de Sitter black
hole, which can perhaps be interpreted in this context as a stability feature of these
spacetimes.

Our global strategy follows closely that of [Dau04; Dau10; NH04]: we will adopt the
point of view of a class of observers for which the two horizons are asymptotic and will
show in Section 3.5 that a conjugate operator in the sense of Mourre theory [AMG96;
Mou81] can be constructed in an analogous fashion to that in the exterior of a Kerr
black hole as in [Dau04; NH04]. Furthermore, it has already been noted, for example
in [BC10], that the presence of the simple horizon is enough to ensure that the usual
proof of the absence of eigenvalues – via a Grönwall inequality exploiting the separability
of the Dirac equation – follows through without modification. However, our results do
not follow directly from these works due to long-range potentials at the extreme horizon
and a significantly perturbed angular operator. In particular, the decomposition of the
Hilbert space into spin harmonics, essential to the reduction to the spherically symmetric
case treated in [Dau10] is no longer stable. A key ingredient to our analysis, carried out
in Section 3.6.4 is constructing operators at both asymptotic ends with similar adapted
decompositions and of which the full Dirac operator is a short-range perturbation. Fur-
thermore, it is worth noting that since the mass terms do not survive at either of the
horizons, despite constituting a long-range potential near the double one, some of the
arguments in [Dau10] can be simplified.

3.3.1 The Kerr-de Sitter metric

Throughout this text, we will mainly use the usual Boyer-Lindquist like coordinates
(t, r, θ, φ) in which the Kerr-de Sitter metric is known to be (signature (+,−,−,−)):

g = ∆r

Ξ2ρ2 [dt− a sin2 θdφ]2 − ρ2

∆r

dr2 − ρ2

∆θ

dθ2 − ∆θ sin2 θ

ρ2Ξ2 [(r2 + a2)dφ− adt]2, (3.5)
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where:
l2 = Λ

3 , ∆r = r2 − 2Mr + a2 − l2r2(r2 + a2),

Ξ = 1 + a2l2, ∆θ = 1 + a2l2 cos2 θ, ρ2 = r2 + a2 cos2 θ.
(3.6)

It depends on three parameters a,M,Λ, the angular momentum per unit mass of the
black hole, the mass of the black hole and the cosmological constant, respectively. We will
always assume l > 0.

The above expression is singular when ∆r = 0 or ρ = 0, however, the manifold can be
analytically extended across the singularities {∆r = 0}. In such an extension, the roots of
∆r give rise to null hypersurfaces that we will refer to as horizons. They will be labelled
by the root ri to which they correspond as so: Hri

. If ri is a double (resp. simple) root of
∆r, Hri

will be said to be a “double" (resp. “simple”) horizon. In, for instance, [Bor18],
it is shown that the roots of ∆r can be labelled such that either:

1. r−− < 0 < r− < r+ < r++

2. r−− < 0 < r− = r+ < r++

3. r−− < 0 < r− < r+ = r++

4. r−− < 0 < r− = r+ − r++

5. r−− < r++, r−, r+ ∈ C \ R.

We will refer to case (2) as extreme Kerr-de Sitter; a necessary and sufficient condition
for this is:

|a|l < 2 −
√

3,

M2 = (1 − a2l2)(a4l4 + 34a2l2 + 1) − γ
3
2

54l2 ,
(3.7)

where γ = (1 − a2l2)2 − 12a2l2. In this situation the double root is given by:

re
6 =

12a2l2 + (1 − a2l2)(1 − a2l2 − √
γ)

18Ml2
. (3.8)

For future reference, we quote the following useful properties of re : 0 ≤ re <
4
3
a2

M
,

l2r4
e + a2 = Mre.

(3.9)

6. In [Bor18] it was denoted by x
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Finally, we note that the other two roots r++ and r−− are equally those of the polynomial:

X2 + 2reX − a2

l2r2
e

. (3.10)

To avoid unnecessarily complicated subscripts, we will now rename the roots of ∆r as
follows:

r− < 0 < re < r+.

The region, B, in which we will study the scattering of Dirac fields is defined in the
coordinates (t, r, θ, φ) by re < r < r+. In essence, B = R×]re, r+[×S2, with the metric
given by (3.5), that extends analytically to the poles. It is between two horizons, one
double, one simple and it is the effect of the double horizon that we wish to understand.

The scattering problem will be considered from the point of view of a stationary
observer with world-line:

r = r0, θ = θ0, φ = ωt+ ϕ0, ω ∈ R, r0 ∈]re, r+[, θ0 ∈]0, π[, ϕ0 ∈]0, 2π[.

Proper time for such an observer differs from the coordinate function t only by a mul-
tiplicative constant depending on the parameters of the trajectory. For this family of
observers photons travelling, say, along a principal null geodesic, which are in some sense
the most direct trajectories for light to travel towards one of the horizons, will not reach
it in finite time. For instance, the coordinate time t necessary for a photon, emitted from
r = r0 at t = t0, to reach H+ travelling along such a curve is:

t− t0 =
∫ r+

r0

Ξ(r2 + a2)
∆r

dr = +∞. (3.11)

In fact, for our purposes, it will be appropriate to replace the coordinate r, by the Regge-
Wheeler type coordinate r∗ =

∫ Ξ(r2 + a2)
∆r

dr appearing in this computation. By defini-
tion:

dr∗ = Ξ(r2 + a2)
∆r

dr. (3.12)

It will be useful to calculate an explicit expression for r∗ by a partial fraction decompo-
sition of the integrand:

r2 + a2

(r − r−)(r − re)2(r − r+) = α

r − r−
+ β

r − r+
+ γ

r − re
+ δ

(r − re)2 . (3.13)
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The coefficients α, β, γ, δ are given by:

α = − l

2

√
re
M

r2
− + a2

(re − r−)2 < 0, β = l

2

√
re
M

r2
+ + a2

(r+ − re)2 > 0,

δ = l2r2
e(r2

e + a2)
3Mre − 4a2 < 0, γ = −2l2r3

e(2r2
e − 7Mre + 6a2)

(3Mre − 4a2)2 < 0.

The sign of γ follows from the following relations: r2
e l

2(r2
e + a2) = r2

e + a2 − 2Mre,

0 < 3Mre − 4a2 − 2r2
e l

2(r2
e + a2) = 7Mre − 6a2 − 2r2

e .

The expression of r∗ is therefore:

r∗ = Ξ
2l

√
re
M

ln
(

|r − r−|η−

|r − r+|η+

)
+ r2

e(r2
e + a2)

3Mre − 4a2
Ξ

r − re

+2r3
e(2r2

e − 7Mre + 6a2)
(3Mre − 4a2)2 Ξ ln |r − re| +R0.

(3.14)

Above, R0 is an arbitrary real constant and η± = r2
±+a2

(re−r±)2 .
From (3.14), one can deduce the following asymptotic equivalences:

Lemma 3.3.1.

r+ − r ∼
r∗→+∞

e
− 2l

Ξη+

√
M
re
r∗

, (3.15)

r − re ∼
r∗→−∞

r2
e(r2

e + a2)Ξ
3Mre − 4a2

1
r∗ . (3.16)

(3.15) is true for a suitable choice of R0: it is the usual behaviour that we have come to
expect at a simple black hole horizon. The decay near the double horizon, however, is a
lot slower and will be the source of technical difficulties when constructing a scattering
theory.

3.3.2 The Dirac equation

Notations

On B, ∆r > 0 and the coordinate t is a “time function”, providing a foliation (Σt)t∈R

of B into spacelike Cauchy hypersurfaces. B is therefore an orientable globally hyperbolic
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4-manifold and as such, by a result due to R. Geroch [Ger68; Ger70], possesses a global
spin structure.

The Dirac equation is most conveniently expressed with Penrose’s abstract index no-
tation 7 denoting by SA the module of sections of the two-spinor bundle S and, SA′ , that
of the pointed two spinor bundle S′; lowered indices are used for sections of the dual
bundles. We recall that SA is identified with SA′ via complex conjugation and to SA via
the canonical symplectic form εAB according to: κB = κAεAB = −εBAκA,

κA
′ = κA,

κA ∈ SA.

The bundle S ⊗ S′ can be identified with the complexified tangent bundle C ⊗ TB and
finally:

εABεA′B′ = gab.

Following [Nic02], we will refer to elements of SA⊕SA′ as Dirac spinors, the massive Dirac
equation for a spin-1

2 Dirac spinor (ϕA, χA
′) is then:

 ∇AA′
ϕA = µχA

′
,

∇AA′χA
′ = −µϕA,

µ = m√
2
. (3.17)

As mentioned in the introduction, it is well known that the equation has a conserved
current, namely:

jAA′ = ϕAϕ̄A′ + χA′χ̄A.

Thus the total charge:
Q =

∫
Σt

T ajaωg,Σt , (3.18)

is conserved. ωg,Σt =
√

∆r

∆θ

ρσ
(r2+a2)Ξ2 dr∗ ∧ (sin θdθ ∧ dφ) is the induced volume form on Σt

8

and T a is colinear to ∇at and normalised, for convenience, such that T aTa = 2.

Q defines an inner product on spinors defined on any slice 9, Σt, t ∈ R, and gives rise
to a Hilbert space Ht. Solving the Dirac equation can be thought of as finding a family

7. See again [PR84].
8. Oriented by −∇t.
9. These can be thought of as either sections of the pullback bundle of S via the canonical injection,

or, sections of the spinor bundle on Σs; there is an identification between them since dim B = 4.
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of isometries U(u, s) : Hs 7→ Hu such that for any u, s, w ∈ R :

U(s, s) = Id, U(u, s)U(s, w) = U(u,w).

The framework sketched here can nevertheless be significantly simplified since ∂t is a
global Killing field on B. All slices Σt are thus isometric, in particular, B is isometric to
R × Σ for some fixed Σ. Furthermore, the Ht can all be identified and so one can view
the problem as an evolution problem on a fixed Hilbert space H . For these reasons, we
will seek expressly to write the Dirac equation as a Schrödinger type equation. Moreover,
we will work directly with spinor densities 10 on Σ, i.e. the section of (S ⊕ S′) ⊗ E(−n+1

2 )
given by:

(ϕA, χA
′)|ωg,Σ|

1
2 . (3.19)

After a choice of spin-frame, this means that our Hilbert space H can be assimilated
with L2(Σ) ⊗ C4 = L2(Rr∗ × S2) ⊗ C4 equipped with its natural inner product :

(ϕ, ψ) =
∫

⟨ϕ, ψ⟩C4dr∗dΩ, dΩ = sin θdθdφ.

We refer to [Nic02] for a more detailed discussion on the framework outlined above.
To convert Equation (3.17) this into a system of four scalar equations we will use the

local spin-connection forms αABa of a local normalised spin frame (εAA)A∈{0,1} defined by:

αABa = εAB∇aε
B
B.

Given any orthonormal frame gaa and a normalised spin frame εAA such that the vector
fields:

la = εA0 ε
A′

0′ ; na = εA1 ε
A′

1′ ; ma = εA0 ε
A′

1′ ;

of the Newman-Penrose tetrad (la, na,ma, m̄a) satisfy:


la = ga
0 +ga

1√
2 ,

na = ga
0 −ga

1√
2 ,

ma = ga
2 +iga

3√
2 ,

(3.20)

10. An orientation on Σ can be seen as a bundle morphisme between ΛnT ∗Σ and the density bundle.
See also Definition 1.4.1.
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then the spin connection forms are given in terms of the local connection forms ωij in the
basis gaa by:

α0
0 = ω0

1 + iω2
3

2 , α1
0 = ω2

0 + ω2
1

2 + i
ω3

0 + ω3
1

2 , α0
1 = ω2

0 − ω2
1

2 − i
ω3

0 − ω3
1

2 . (3.21)

A spin connection is a sl(2,C)-valued one-form, so necessarily:

α1
1 = −α0

0.

In terms of the covariant derivative, this is equivalent to the requirement that ∇aεAB = 0.
The forms αA′

B′a = εA
′

B′ (∇aε
B′
B′) satisfy:

αA
′

B′a = αABa (3.22)

Remark 3.3.1. It should be remarked that our conventions differ slightly from those
in [PR84], namely, we identify R4 to H(2,C) via the isomorphism :

φ :

R4 −→ H(2,C)
x0

x1

x2

x3

 7−→

 x0 + x1 x2 − ix3

x2 + ix3 x0 − x1



Remark 3.3.2. Consider the Lie group morphism Λ : SL(2,C) → SO+(1, 3) defined
by associating to any A ∈ SL(2,C) the matrix Λ(A) of the linear map u defined by
u(x) = φ−1(Aφ(x)A∗), x ∈ R4 expressed in the canonical basis of R4. Then, viewing
ω = (ωij)i,j∈J0,3K and α = (αAB)A,B∈{0,1} as matrix valued one-forms, it follows that for
any (p, v) ∈ TM :

αp(v) = Λ−1
∗ (ωp(v)),

where Λ∗ is the Lie algebra isomorphism induced by Λ.

Once a choice of spin-frame has been made, Equation (3.17) can be written as four scalar
equations in terms of the components ϕA, χA′ of the spinor fields. For instance, the equa-
tion:

∇AA′ϕA = −µχA′ ,
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becomes,
∇AA′ϕA + ϕAαBA CC′ε

C
Bε

C′

A′ = −µχA′ .

For A = 0′, this translates to :

la∇aϕ
0 + m̄a∇aϕ

1 + ϕ0
(
α0

0al
a + α1

0am̄
a
)

+ ϕ1
(
α0

1al
a + α1

1am̄
a
)

= −µχ0′ ,

or, equivalently:

la∇aϕ1 − m̄a∇aϕ0 + ϕ1
(
α0

0al
a + α1

0am̄
a
)

− ϕ0
(
α0

1al
a + α1

1am̄
a
)

= µχ1′
.

Overall, we obtain the following system of equations for the components:

la∇aχ
0′ +ma∇aχ

1′ + χ0′
F + χ1′

G = −µϕ0,

m̄a∇aχ
0′ + na∇aχ

1′ + χ0′
G1 + χ1′

F1 = −µϕ1,

ma∇aϕ1 − na∇aϕ0 + ϕ1G1 − ϕ0F1 = −µχ0′
,

la∇aϕ1 − m̄a∇aϕ0 + ϕ1F − ϕ0G = µχ1′
,

(3.23)

where we have defined:

F = α0
0al

a + α1
0am̄

a, G = α0
1al

a + α1
1am̄

a,

F1 = α0
1am

a + α1
1an

a, G1 = α0
0am

a + α1
0an

a,

and used the fact that, by Equation (3.22), for any complex vector fields ua, va:

αA
′

B′aū
a + αC

′

D′av̄
a = αABau

a + αCDav
a .

Dirac equation in the “Boyer-Lindquist" frame

We will first use the results in [Bor18] to write the Dirac equation in the frame:

ga0
∂

∂xa
= Ξ
ρ
√

∆r

(
(r2 + a2)∂t + a∂φ

)
, ga1

∂

∂xa
=

√
∆r

ρ
∂r,

ga2
∂

∂xa
=

√
∆θ

ρ
∂θ, ga3

∂

∂xa
= Ξ

sin θ
√

∆θ ρ

(
∂φ + a sin2 θ∂t

)
.

(3.24)
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The expressions for F,G, F1, G1 are given by:

F = 1
2
√

2
√

∆rρ3

(
∆′
r

2 ρ2 + ∆rr̃

)
, F1 = −F, G1 = G,

G = 1
2
√

2
√

∆θ sin θρ3

(
ia∆θ sin2 θr̃ + cos θρ2(1 + a2l2 cos(2θ))

)
,

where ∆′
r = ∂∆r

∂r
and r̃ = (r + ia cos θ). In matrix form, with ψ = t

(
ϕ0, ϕ1, χ

0′
, χ1′

)
,

Equation (3.23) is then:
i(γµ∂µ + V )ψ = mψ.

In the above:

V =
√

2


0 0 iF̄ iḠ

0 0 iḠ −iF̄
iF iG 0 0
iG −iF 0 0

 ,

γt = Ξ(r2 + a2)√
∆rρ2

 0 iI2

−iI2 0

− i
a sin θΞ√

∆θρ2

 0 σy

σy 0

 ,
γr = i

√
∆r

ρ2

 0 σz

σz 0

 , γθ = i

√
∆θ

ρ2

 0 σx

σx 0

 ,
γφ = aΞ√

∆rρ2

 0 iI2

−iI2 0

− i
Ξ√

∆θρ2 sin θ

 0 σy

σy 0

 .
The γµ are the so-called “gamma matrices” that satisfy the Clifford algebra anti-commutation
relations:

{γµ, γν} = 2gµνId4.

σx, σy, σz are the Pauli matrices,

σx =
 0 1

1 0

 , σy =
 0 −i
i 0

 , σz =
 1 0

0 −1

 = −iσxσy.
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Change of spin-frame

Whilst adapted to the study of the algebraic structure of the curvature of the Kerr-de
Sitter metric, the orthonormal frame gaa and its associated normalised spin-frame εAA 11

are not well aligned with the foliation of B with the space-like level hypersurfaces of t,
in the sense that ga0 is not parallel to ∇at. Following [Dau04; NH04], we switch to a new
frame in which the timelike vector is colinear to the future pointing vector field ∇at. Since
∇at⊥ = span(∂r, ∂θ, ∂φ) we make the simplest choice:

g′a
0 = ∇at√

|∇at∇at|
, g′a

1
∂

∂xa
= 1√

−grr
∂r,

g′a
2
∂

∂xa
= 1√

−gθθ
∂θ, g

′a
3
∂

∂xa
= 1

√−gφφ
∂φ.

The matrix P of the Lorentz transformation Lba that sends gaa to g′a
a is given by:

P = Mg′a
a ,g

b
b
(Id) =



√
∆θ(r2+a2)

σ
0 0 −a sin θ

√
∆r

σ

0 1 0 0
0 0 1 0

−a sin θ
√

∆r

σ
0 0

√
∆θ(r2+a2)

σ

 , (3.25)

where we have defined:
σ2 = ∆θ(r2 + a2)2 − ∆ra

2 sin2 θ. (3.26)

Up to sign, the spin transformation A ∈ SL(2;C) that corresponds to P is:

A =


√

σ+
2σ

ia sin θ
√

∆r√
2σσ+

− ia sin θ
√

∆r√
2σσ+

√
σ+
2σ

 , (3.27)

in the above formula σ+ = σ +
√

∆θ(r2 + a2). It is useful to note that σ+ satisfies:

σ2
+ − a2 sin2 θ∆r = 2σσ+.

The appropriate change of basis matrix in SAp ⊕ SA′
p at each point p of block II is given

11. determined up to sign
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by:

P̃ =
 tA−1 0

0 Ā

 =
√
σ+

2σ I4 + a sin θ
√

∆r√
2σσ+

 −σy 0
0 σy

 . (3.28)

The equation satisfied by ψ′ = P̃−1 ψ is hence:

iP̃−1(γµ∂µ + V )P̃ψ′ = mψ′. (3.29)

The left-hand side is:

iP̃−1(γµ∂µ + V )P̃ = i

(
γ̃µ∂µ + Ṽ + P̃−1γµ

∂P̃

∂xµ

)
,

where:

γr = γ̃r, γθ = γ̃θ, Ṽ = V, γ̃t = Ξσ√
∆r∆θρ

 0 iI2

−iI2 0

 ,

γ̃φ = aΞq2ρ

σ
√

∆r∆θ

 0 iI2

−iI2 0

− i
Ξρ

σ sin θ

 0 σy

σy 0

 ,

P̃−1γr
∂P̃

∂r
=

√
∆r

ρ
fr

 0 −σx
σx 0

 , P̃−1γθ
∂P̃

∂θ
=

√
∆θ

ρ
fθ

 0 σz

−σz 0

 .

(3.30)

In the above formulae, we have introduced the following notations:

q2 = (∆θ(r2 + a2) − ∆r)ρ−2,

fr = a sin θ
√

∆θ

2σ2
√

∆r

(
−∆′

r

2 (r2 + a2) + 2r∆r

)
, fθ = −a

√
∆r(r2 + a2) cos θΞ

2σ2
√

∆θ

.

We conclude this section by writing the equation satisfied by the spinor density. In the
trivialisation of the density bundle determined by |dr∗ ∧ dΩ| 1

2 the density can be written:

Φ =
(

∆rρ
2σ2

∆θ(r2 + a2)2Ξ4

) 1
4

︸ ︷︷ ︸
α(r,θ)−1

ψ′. (3.31)
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Φ satisfies almost the same equation as ψ′ except for two additional terms:

iγ1∂r(lnα(r, θ))Φ + iγ2∂θ(lnα(r, θ))Φ.

Overall the equation becomes:

iγ̃0∂tΦ + iγ̃1∂rΦ + iγ̃2∂θΦ + iγ̃3∂φΦ + iV1Φ = mΦ, (3.32)

with:

V1 =


0 0 i ¯̃F i ¯̃G
0 0 i ¯̃G −i ¯̃F
iF̃ iG̃ 0 0
iG̃ −iF̃ 0 0

 , (3.33)

F̃ =
√

2F + i

√
∆θ

ρ
fθ +

√
∆r

ρ
∂r lnα(r, θ),

G̃ =
√

2G− i

√
∆r

ρ
fr +

√
∆θ

ρ
∂θ lnα(r, θ).

(3.34)

More explicitly:

F̃ = i
√

∆ra cos θ
2ρ3 − ia

√
∆r(r2 + a2) cos θΞ

2σ2ρ
+

√
∆ra

2 sin2 θ

2ρσ2(r2 + a2)

(
∆′
r

2 (r2 + a2) − 2r∆r

)
,

G̃ = ia∆θ sin2 θr + cos θρ2Ξ − 3a2l2 sin2 θ cos θρ2

2
√

∆θ sin θρ3 +
√

∆θa
2 sin θ cos θ
2ρσ2

(
(r2 + a2)Ξ − 2Mr

)
−ia sin θ

√
∆θ

2σ2ρ

(
2r∆r − ∆′

r

2 (r2 + a2)
)
,

Rewriting Equation (3.32) as an evolution equation, and introducing DS2 , the Dirac op-
erator on the 2-sphere, we obtain the following form of the Dirac equation:

i∂tΦ + i
∆r

√
∆θ

Ξσ Γ1∂rΦ −
√

∆r∆θ

Ξσ DS2Φ + iaq2ρ2

σ2 ∂φΦ + i
√

∆r∆θ

σ sin θ

(
ρ2

σ
−

√
∆θ

Ξ

)
Γ3∂φΦ

+ i
√

∆r∆θρ

σΞ Ṽ1Φ =
√

∆r∆θ

Ξσ ρmΓ0Φ. (3.35)
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This can be written as a Schrödinger equation i
∂Φ
∂t

= HΦ with H given by:

H = ∆r

√
∆θ

Ξσ Γ1Dr +
√

∆r∆θ

Ξσ DS2 + aq2ρ2

σ2 Dφ +
√

∆r∆θ

σ sin θ

(
ρ2

σ
−

√
∆θ

Ξ

)
Γ3Dφ

− i
√

∆r∆θρ

σΞ Ṽ1 +
√

∆r∆θ

Ξσ ρmΓ0. (3.36)

In the above, we have adopted similar notations to [Dau04]:

Dφ = −i∂φ, Dr = −i∂r, Dθ = −i∂θ,

DS2 is the Dirac operator on the 2-sphere:

DS2 =
(
Dθ − i

cotanθ
2

)
Γ2 + Dφ

sin θΓ3,

the matrices Γi are defined by:

Γ0 = i

 0 I2

−I2 0

 , Γ1 = diag(−1, 1, 1,−1), Γ2 =
 −σx 0

0 σx

 , Γ3 =
 σy 0

0 −σy

 .

Defining an operator operation c⊠M with c ∈ C and M =
 M1 0

0 M2

 a block-diagonal

matrix by:

c⊠M =
 cM1 0

0 c̄M2

 ,
the potential Ṽ1 can be written:

Ṽ1 = F̃ ⊠ Γ1 +
(
G̃− cotanθ

√
∆θ

2ρ

)
⊠ Γ2.

For computational purposes it is worth noting that the operation ⊠ enjoys the following
properties:

1. ⊠ is distributive with respect to addition,
2. It is C-homogenous in M and R-homogenous in c,
3. (c⊠M)∗ = c̄⊠M∗,
4. If c ∈ R, c⊠M = cM ,
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5. If M is hermitian, (−i(c⊠M))∗ = −i(c⊠ A) + 2iℜ(c)M .

3.4 Analytic framework

3.4.1 Symbol spaces

In what follows we will attempt to treat the operator H defined by Equation (3.36)
as a perturbation of another operator. In order to have a succinct language in which to
distinguish the asymptotic behaviour of the coefficients of H, we introduce the following
symbol spaces:

Π =
{
f ∈ C∞(Σ), ∂α1

r ∂
α2
θ ∂

α3
φ f ◦ ψ−1 ∈ L∞(]re, r+[×S2), αi ∈ N

}
.

For (m,n) ∈ N2:

Sm,n =

f ∈ C∞(Σ), ∂α1
r∗ ∂α2

θ ∂
α3
φ f ◦ ψ∗−1 =


O

r∗→+∞

(
e−mκr∗

)
O

r∗→−∞

(
1

r∗n+α1

) αi ∈ N

 .
ψ and ψ∗ denote the coordinate charts (r, θ, φ) and (r∗, θ, φ) respectively and κ is defined
by:

κ = l

Ξη+

√
M

re
. (3.37)

By extension, if M ∈ C∞(Σ) ⊗ M4(C),we will also write M ∈ Sm,n (resp. M ∈ Π) if
the operator norm of the matrix M , ||M ||, is an element of Sm,n (resp. Π); this is of
course equivalent to the requirement that each of its components satisfies the appropriate
condition. Finally, we define:

S∞,n =
⋂
m

Sm,n, Sm,∞ =
⋂
n

Sm,n. (3.38)

Many of the functions f at hand will be naturally expressed in the coordinate chart
ψ, the following results will enable us to infer rapidly the asymptotic behaviour of the
function when expressed in the chart ψ∗. The only missing information is the relationship
between partial derivatives with respect to r and those with respect to r∗. From (3.12),
one has:

∂r∗ = ∆r

Ξ(r2 + a2)∂r. (3.39)
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So the question is settled by:

Lemma 3.4.1. Define the map α on Σ by its coordinate expression: α ◦ ψ−1 = ∆r

Ξ(r2+a2) ,
then α ∈ S2,2.

Proof. Remark first that, from equations (3.15) and (3.16), since re is a double root of
the polynomial ∆r, we have:

∆r = O
r∗→−∞

( 1
r∗2

)
, ∆r = O

r∗→+∞

(
e−2κr∗)

,

∆′
r = O

r∗→−∞

( 1
r∗

)
.

(3.40)

Hence:
α(r∗) = O

r∗→−∞

( 1
r∗2

)
, α(r∗) = O

r∗→+∞

(
e−2κr∗)

,

∂rα(r∗) = O
r∗→−∞

( 1
r∗

)
, ∂rα(r∗) = O

r∗→+∞
(1).

(3.41)

For any n ≥ 2, it is easy to see that ∂nr α(r∗) = O(1). Now, ∂r∗α(r∗) = α(r∗)∂r α(r∗),
so we have the correct behaviour at infinity after the first derivative. We claim that for
n ≥ 1:

∂nr∗α(r∗) =
n∑
k=1

fk(r∗)(∂rα(r∗))βk(α(r∗))k, (3.42)

where αk ∈ N, fk ∈ Π and βk + 2k ≥ n+ 2 for each k ∈ J1, nK.
This is obvious for n = 1 and if such a relationship is true for some n ≥ 1, after

differentiation one has:

∂n+1
r∗ α(r∗) =

n∑
k=1

∂rfk(r∗)(∂rα(r∗))βk(α(r∗))k+1+βkfk(r∗)∂2
rα(r∗)(∂rα(r∗))αk−1(α(r∗))k+1

+
n∑
k=1

fk(r∗)(∂rα(r∗))βk+1(α(r∗))k.

Therefore, ∂n+1
r∗ α(r∗) satisfies (3.42), with:

β̃n+1 = max(0, βn − 1),

f̃n+1 = ∂rfn(∂rα)βn−β̃n+1 + βnfn∂
2
rα,

f̃1 = f1 = 1, β̃1 = β1 + 1 = n+ 1.
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and for k ∈ J2, nK:

β̃k = min(βk + 1,max(0, βk−1 − 1)),

f̃k = ∂rfk−1(∂rα)βk−1−β̃k + βk−1fk−1∂
2
rα(∂rα(r∗))βk−1−1−β̃k + fk(∂rα)βk+1−β̃k .

The f̃k clearly satisfy the required hypothesis; if β̃k ̸= 0, then, either β̃k = βk + 1 or
β̃k = βk−1 − 1. In the first case, then:

β̃k + 2k ≥ n+ 4,

in the second case:
β̃k + 2k ≥ n+ 2 + 2 − 1 = n+ 3.

If β̃k = 0, then necessarily this implies βk−1 ≤ 1. By hypothesis, βk−1 satisfies: βk−1 +2k ≥
n + 4, so, 2k ≥ n + 3, and the hypothesis is equally satisfied. Hence, the result follows
by induction. The asymptotics can now be read from (3.42), each term in the sum is
O(α) = O(e−2κr∗) at r∗ → +∞ and every term in the sum is O(r∗−(n+2)) at r∗ → −∞.

One can now use the Faà di Bruno formula 12 to show that:

f ∈ Π ⇒ f ∈ S0,0, ∂r∗f ∈ S2,2. (3.43)

In particular, if f ∈ Π and f(r∗) = O
r∗→−∞

( 1
r∗ ) then f ∈ S0,1.

3.4.2 φ-invariance

The metric on B does not depend on the coordinate φ; this invariance will be ex-
ploited in two ways in this paper. Firstly, diagonalising Dφ with anti-periodic boundary
conditions, any ϕ ∈ H can be represented as:

ϕ(r, θ, φ) =
∑

p∈Z+ 1
2

ϕp(r, θ)eipφ.

The subspaces of this Hilbert sum are stable under the action of H, and we could just
consider the restriction of H to any such subspace; this would enable us to treat the
terms with factor Dφ as potentials. However, some terms contain explicit coordinate

12. See, appendix B.2
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singularities. To avoid technical difficulties due to this, it is more convenient to work with
the operator Hp formally defined on H by:

Hp = ∆r

√
∆θ

Ξσ Γ1Dr +
√

∆r∆θ

Ξσ DS2 − i
√

∆r∆θρ

σΞ Ṽ1 +
√

∆r∆θ

Ξσ ρmΓ0 + aq2ρ2

σ2 p

+
√

∆r∆θ

σ sin θ

(
ρ2

σ
−

√
∆θ

Ξ

)
Γ3p. (3.44)

The function
√

∆r∆θ

σ sin θ

(
ρ2

σ
−

√
∆θ

Ξ

)
is well-defined and bounded, because 13:

ρ2

σ
−

√
∆θ

Ξ = 1
σΞ

(
Ξ2ρ4 − ∆θσ

2

Ξρ2 +
√

∆θσ

)
,

and:

Ξ2ρ4 − ∆θσ
2 = a2 sin2 θ

(
∆θ∆r + 2Ξ(r2 + a2)(l2r2 − 1) + a2 sin2 θ(Ξ2 − l4(r2 + a2)2)

)
.

Hp coincides with H on the subspace corresponding to the eigenvalue p ∈ Z+ 1
2 of Dφ

and the coordinate singularity is absorbed into DS2 which is well-defined as an operator
on the sphere.

In later analysis, it will also prove convenient to rotate the coordinate system so as
to cancel some of the effects of rotation at the double horizon. Setting c0 = a

r2
e+a2 , the

coordinate transformation is:

t′ = t, r∗′ = r∗, θ′ = θ, φ′ = φ− c0t.

Naturally, φ and φ′ are circular coordinates. Due to the φ-invariance of the metric, Hp

transforms very little under this change of coordinates, in fact, we just have to perform
the substitution:

Hp → Hp − c0p.

From now on, unless otherwise stated, we will work in the rotated coordinates. For conve-
nience however, we will continue to call φ the new circular coordinate φ− c0t. Thanks to
the φ-invariance of our problem this should not cause any confusion.

13. σ is defined by Equation (3.26). One has: σ2 = Ξ(r2 + a2)ρ + 2Mra2 sin2 θ ≥ Ξ(r2
e + a2)r2

e
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3.4.3 A comparison operator

Almost all the operators we will study in this paper are perturbations of a single
operator H0 given by:

H0 = Γ1Dr∗ + g(r∗)D + f(r∗). (3.45)

The functions g and f satisfy:

g(r∗) =
√

∆r

Ξ(r2 + a2) ∈ S1,1, f(r∗) = ap

r2 + a2 − ap

r2
e + a2 ∈ S0,1, (3.46)

whilst, the operator D is defined by:

D = ∆
1
4
θDS2∆

1
4
θ . (3.47)

The structure of this comparison operator is very similar to that of those used in [NH04;
Dau04], except that, here, the angular part D is a perturbation of the Dirac operator
on the sphere DS2 , rather than DS2 itself. The spectral properties of the latter, which
are well-documented 14,were quite essential to the analysis in [NH04; Dau04], luckily, D
shares many of them.

Lemma 3.4.2. Let S be the self-adjoint extension in L2(S2) ⊗ C2 of the operator:

(Dθ − i
cot θ

2 )σx − Dφ

sin θ
σy,

defined on the subset of [C∞(S2)]2 with anti-periodic boundary conditions in φ. Denoting
its domain D(S), S̃ = ∆

1
4
θ S∆

1
4
θ is self-adjoint on D(S) and has compact resolvent.

Proof. S has a core consisting of smooth functions on which a simple calculation shows
that:

S̃ =
√

∆θS − i

2
a2l2 cos θ sin θ√

∆θ

σx.

14. see, for example [Abr02; CH96; Tra93]
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The expression extends to all of D(S) by continuity in the graph topology. The estimates:

0 ≤
√

∆θ − 1 ≤ ∆θ − 1√
∆θ + 1

≤ a2l2

2 ,∥∥∥∥∥iσxa2l2 cos θ sin θ
2
√

∆θ

u

∥∥∥∥∥
2

≤ a4l4

4 ||u||2, u ∈ L2(S2,C2),
(3.48)

together imply for u ∈ D(S):
∥∥∥∥∥(
√

∆θ − 1)Su− iσx
a2l2 cos θ sin θ

2
√

∆θ

u

∥∥∥∥∥ ≤ a2l2

2 (||Su|| + ||u||) . (3.49)

It is easy to see from (3.7) that a2l2

2 < 1. Thus, by the Kato-Rellich Perturbation The-
orem [Lax02; Kat80], S̃ is self-adjoint on D(S). In order to show that S̃ has compact
resolvent, it suffices to show that there is a z ∈ ρ(S̃) such that R(S̃, z) is compact, for, by
the resolvent identity, the property will follow for all z ∈ ρ(S̃). In fact, in this perturbation
theory setup, it is sufficient to show that there is some z ∈ ρ(S) such that the following
inequality holds:

a2l2

2 ||R(z, S)|| + a2l2

2 ||SR(z, S)|| < 1, (3.50)

where R(z, S) denotes the resolvent of the operator S at z. Indeed, assuming (3.50), it
follows from (3.49) that for any u ∈ L2(S2,C2):

||(S̃ − S)R(z, S)u|| ≤ a2l2

2 ||SR(z, S)u|| + a2l2

2 ||R(z, S)u|| < ||u||.

(S̃−S)R(z, S) is therefore a bounded linear operator and I + (S̃−S)R(z, S) is invertible
with bounded inverse. Moreover:

S̃ − zI = S + S̃ − S − zI = (I + (S̃ − S)R(z, S))(S − zI).

Consequently, S̃ − zI has bounded inverse given by:

R(z, S)(I + (S̃ − S)R(z, S))−1.

R(z, S) is compact because S has compact resolvent, so (S̃− zI)−1 = R(S̃, z) is compact.

We now show there is z ∈ ρ(S) such that (3.50) is satisfied. By self-adjointness, it
suffices to seek z of the form z = ic. A classical resolvent estimate shows then that:
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||R(z, S)|| ≤ 1
|c| so that ||R(z, S)|| is arbitrarily small for |c| large enough. Furthermore,

for any z ∈ ρ(S) we have ||SR(z, S)|| ≤ 1, since a2l2

2 < 1
2 , (3.50) holds for any |c| > 2.

Lemma 3.4.3. Let S̃ be as in Lemma 3.4.2, the following properties hold:

— −σ(S̃) = σ(S̃),

— σ(S̃)∩] − 1, 1[= ∅.

In particular, the eigenvalues (λk)k∈Z∗ can be indexed by Z∗, in such a way that λ−k = −λk
for each k ∈ Z∗. Furthermore, for each k ∈ Z∗, there is a subset Jk ⊂ Z + 1

2 , such that

for each n ∈ Jk one can find ψk,n(θ, φ) =
 αk,n(θ)
βk,n(θ)

 einφ ∈ L2(S2,C2), ||ψk,n|| = 1,

unique up to a complex phase, satisfying S̃ψk,n = λkψk,n. Necessarily, these form a total
orthonormal family of eigenvectors for S̃.

Proof. To prove that the spectrum of S̃ is disjoint from the open unit interval, it is
sufficient to notice that, as a quadratic form, S̃2 ≥ 1. Indeed, for any u ∈ D(S):

(S̃u, S̃u) = (
√

∆θS∆
1
4
θ u, S∆

1
4
θ u)) ≥ ||u||2, (3.51)

because ∆θ ≥ 1. The other points will be proved in a slightly more involved case in
Section 3.6.4.

Due to the block diagonal form of D, the following is an immediate consequence of
the above:

Corollary 3.4.1. The family:ψ+
k,n =

 ψk,n

0

 , ψ−
k,n =

 0
ψk,n

 , k ∈ Z∗, n ∈ Jk

 ,
is a total orthonormal family of eigenvectors of D.

These results are sufficient to construct a natural decomposition of H that can be used
to obtain a convenient representation of the operator H0. However, we begin by noting
that the subspaces L2(R) ⊗ span{ψ+

k,n, ψ
−
k,n}, k ∈ Z∗, n ∈ Jk, are not stable under the

action of Γ1. Indeed, if ψ is an eigenvector with eigenvalue λ of D, then, since Γ1 anti-
commutes with Γ2 and Γ3, Γ1ψ is an eigenvector with eigenvalue −λ. In particular, the
block diagonal form of Γ1 implies that Γ1ψ±

k,n and ψ±
−k,n must be colinear (because ψk,n is
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unique up to scaling). In fact, Γ1 being unitary and symmetric, one has Γ1ψ±
k,n = ±ψ±

−k,n.
The family ψk,n remains total and orthonormal if ψ−k,n is rescaled to absorb the sign, so
one can assume that: Γ1ψ±

k,n = ψ±
−k,n. The subspaces:

Hk,n = L2(R) ⊗ span
{
ψ+
k,n, ψ

+
−k,n, ψ

−
k,n, ψ

−
−k,n

}
, k ∈ N∗, n ∈ Jk,

are then naturally stable under Γ1 and therefore, under H0, and H =
⊥⊕
k,n

Hk,n. For each

(k, n), Hk,n can be isometrically identified to [L2(R)]4 by the map:

bk,n : Hk,n −→ [L2(R)]4

u1ψ
+
k,n + u2ψ

+
−k,n

+u3 ψ
−
k,n + u4ψ

−
−k,n

7−→ 1√
2


u1 − u2

u1 + u2

u3 + u4

u3 − u4


. (3.52)

Through this identification the restriction, Hk,n
0 , of H0 to Hk,n can be written:

Hk,n
0 = Γ1Dr∗ − λk,ng(r∗)Γ2 + f(r∗). (3.53)

This is clearly a bounded perturbation of the self-adjoint operator Γ1Dr∗ with domain
[H1(R)]4, hence it is self-adjoint on the same domain.

We are now ready to use the lemma below 15 to obtain a description of a domain where
the formal expression for H0 is self-adjoint.

Lemma 3.4.4. Let X be a Hilbert space and (Xn)n∈N a family of subspaces of X such
that:

X =
⊥⊕
n∈N

Xn,

where the sum is topological. Let (An)n∈N be a sequence of operators An on Xn, such that
for each n, An is self-adjoint on its domain D(An). Then the operator A defined by:

Ax =
∑
n

Anxn,

15. see [NH04, Lemma 3.5]
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if x = ∑
xn, xn ∈ Xn for any n ∈ N is self-adjoint on:

D(A) =

x =
∑
n

xn ∈ X,
∑
n∈N

||Anxn||2 < ∞

 .
Proof. It is clear that A is densely defined. In order to show that A is closed, denote
by Pk the orthogonal projection onto Xk for each k ∈ N and suppose that (xm)m∈N is a
sequence of points of D(A) such that xm → x and Axm → y in X. Then for any k ∈ N,
Pkx

m → Pkx and PkAx
m = AkPkx

m → Pky by definition, but since Ak is closed, it
follows that Pkx ∈ D(Ak) and Pky = AkPkx. Thus, ∑k ||AkPkx||2 = ∑

k ||Pky||2 < +∞ so
x ∈ D(A) and Ax = y.

To prove that A is self-adjoint we show that A+ z has dense range for any z ∈ C \R.
Let y ∈ X be such that (Ax+ zx, y) = 0 for any x ∈ D(A). In particular, for each k ∈ N,
and every x ∈ D(Ak), (Akx+ zx, Pky) = 0, but then, since Ak is self-adjoint, Pky = 0 for
any k ∈ N, i.e. y = 0.

The natural domain for H0, which is always meaningful in the distributional sense, is
certainly {u ∈ H , H0u ∈ H }, this, in fact, coincides with the domain of the operator
given by the previous lemma:

D(H0) = {u =
∑
k,n

uk,n ∈ H ,
∑
k,n

||Hk,n
0 uk,n||2 < ∞}.

The proof is analogous to that of [NH04, Lemma 3.5].
Since for each k ∈ N∗, n ∈ Jk , D

(
Hk,n

0

)
is isometric to [H1(R)4], and S (R) 16 is dense

in H1(R), we deduce immediately a core for H0, that we will simply denote by S . This
core will be convenient for many computations, in particular, it will justify the use of the
Leibniz rule when computing commutators. More precisely:

Lemma 3.4.5. S =
⊥⊕
k,n

S (R) ⊗ span
{
ψ+
k,n, ψ

+
−k,n, ψ

−
k,n, ψ

−
−k,n

}
is a core for H0.

Proof. For any k, n, Hk,n
0 is self-adjoint on D(Hk,n

0 ) = b−1
k,n([H1(R)]4) (bk,n is defined

by Equation (3.52)) and [S (R)]4 is dense in [H1(R)]4. Denote by Pk,n the orthogonal
projection onto Hk,n. Let u ∈ D(H0) and ε ∈ R∗

+. For each k, n, one can find ϕk,n ∈

16. S (R) denotes the Schwartz space of rapidly decaying functions.
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[S (R)]4 such that:

||bk,nPk,nψ − ϕk,n||[H1(R)]4 ≤ ε
2− k+n+2

2

Ck
,

where Ck = λk||g||∞ + ||f ||∞ + 1, it follows that:

∑
k,n

||Pk,nψ − b−1
k,n(ϕk,n)||2 ≤ ε2,

∑
k,n

||H0(Pk,nψ − b−1
k,n(ϕk,n))||2 ≤ ε2. (3.54)

Therefore,
∑
k,n

Pk,nψ − b−1
k,n(ϕk,n) converges to some y ∈ D(H0). Set ϕ = ψ − y, then

||ϕ− ψ|| + ||H0(ϕ− ψ)|| ≤ 2ε, and for every k, n:

Pk,nϕ = Pk,nψ − Pk,ny = b−1
k,n(ϕk,n),

i.e. ϕ ∈ S . ε being arbitrary this concludes the proof.

3.4.4 Short and long-range potentials

The construction of the wave operators, modified or not, will mainly be based on
Cook’s method 17 or minor variations thereof. Because of this, it will be interesting to
investigate the integrability of the matrix-valued coefficients appearing in our differential
operators. Amongst those, we will call “potentials”, the parts of the order 0 component
of its symbol that vanish on the horizons. For our purposes, they will be split into merely
three groups. Namely a potential V is:

— short-range at +∞ (resp. −∞) if:

sup
r∗≥0,ϑ∈S2

||⟨r∗⟩αV || < + ∞ (resp. sup
r∗≤0,ϑ∈S2

||⟨r∗⟩αV || < + ∞) (3.55)

for some α > 1,

— long-range otherwise,

— of Coulomb-type at +∞ (resp. −∞) if V is long-range there and (3.55) holds with
α = 1.

The norm here is the operator norm on M4(C) and ⟨.⟩ denotes the Japanese bracket
⟨r⟩ =

√
r2 + 1. In relation with the symbol spaces we introduced previously, let m,n ∈ Z

and suppose V ∈ Sm,n, then:

17. See for example [Lax02, Chapter 37]

111



Chapter 3 – An analytical scattering theory for massive Dirac fields in extreme Kerr-de Sitter
spacetime

— m ≥ 1 ⇒ V short-range at +∞,

— n ≥ 2 ⇒ V short-range at −∞,

— n = 1 ⇒ V of Coulomb type at −∞.

3.4.5 Self-adjointness of Hp

It is now relatively easy to prove the self-adjointness of Hp, we first introduce the
function:

h(r, θ) = ∆
1
4
θ

√
r2 + a2

σ
, (3.56)

it satisfies the following properties:

|h2 − 1| ≤ 1 − a2l2 < 1, (3.57)

∂θh = ∆r
(r2 + a2)a2 sin θ cos θΞ

2h
√

∆θσ3 ∈ S2,2. (3.58)

Proof. The first property follows from the following chain of inequalities:

0 ≤ h2 − 1 = ∆ra
2 sin2 θ

σ
(
σ +

√
∆θ(r2 + a2)

)
≤ ∆ra

2 sin2 θ

σ2 ≤ a2

r2 ≤ a2

r2
e

= 6a2l2

1 − a2l2 −
√

(1 − a2l2)2 − 12a2l2
≤ 1 − a2l2.

By Equation (3.7), 1 − a2l2 < 1, the conclusion follows.

The boundedness of ∂r∗h = Ξ∆r

r2+a2∂rh and ∂θh shows that h ∈ B(D(H0)). Indeed,
[H0, h] is defined on D(H0) and:

[H0, h]u = −iΓ1∂r∗hu− i

√
∆θ∆r

Ξ(r2 + a2)Γ2∂θhu, u ∈ D(H0).

Consequently, for any u ∈ D(H0):

||H0hu|| ≤ ||hH0u|| + ||[H0, h]u|| ≤ C(||H0u|| + ||u||), (3.59)

for some constant C ∈ R∗
+. The following relationship between H0 and Hp is therefore
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meaningful:

Hp = hH0h+ VC + VS, (3.60)

with:

VS = −ap
√

∆θ

σ
+ a∆θ(r2 + a2)p

σ2 − a
∆rp

σ2 + ap(h2 − 1)
r2
e + a2

+ i

[ (
ia∆θ

√
∆r

2σ3Ξ

(
2r∆r − ∆′

r

2 (r2 + a2)
))

⊠ Γ2
]

− i

[(
i∆r

√
∆θa cos θ

2ρ2σΞ − ia∆r

√
∆θ(r2 + a2) cos θ

2σ3

)
⊠ Γ1

]
, (3.61)

VC =
√

∆r∆θ

σ sin θ

(
ρ2

σ
−

√
∆θ

Ξ

)
Γ3p+

√
∆r∆θ

Ξσ ρmΓ0 − i

[(
ia

√
∆r sin θr∆θ

2ρ2σΞ

)
⊠ Γ2

]
. (3.62)

In the above, we have sorted the terms according to their asymptotic behaviour at −∞,
since at +∞ all the potentials are short-range. More precisely, the terms in VS are short-
range at −∞ and those of VC are of Coulomb-type there. Equation (3.58) means that
h[H0, h] is short-range at both infinities.

Using Equation (3.60), one shows that:

Lemma 3.4.6. Hp is self-adjoint on D(H0), for any p ∈ Z + 1
2 .

Proof. It follows from Equation (3.60) that:

Hp = H0 + (h2 − 1)H0 + h[H0, h] + VC + VS,

since [H0, h] is bounded, Hp is H0-bounded and, using the fact that :

|h2 − 1| ≤ 1 − a2l2 < 1,

the result follows from the Kato-Rellich Perturbation Theorem.

3.4.6 Further properties of H0

Let us pursue the study of the simplified operator H0; we aim to describe its domain
as well as to generalise a useful criterion for proving compactness of functions of H0.
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Lemma 3.4.7. As quadratic forms on S , H2
0 and Q = D2

r∗ + g2(r∗)D2 are equivalent.

Proof. On S , the following equation makes sense:

H2
0 = D2

r∗ + g(r∗)2D2 + f(r∗)2 + Γ1

i
g′(r∗)D + 2g(r∗)Df(r∗) + {f(r∗),Γ1Dr∗} 18.

Furthermore, for any u ∈ S :

|({f(r∗),Γ1Dr∗}u, u)| ≤ |(Γ1Dr∗u, f(r∗)u)| + |(f(r∗)u,Γ1Dr∗u)|,

≤ 2||Γ1Dr∗u||||f(r∗)u||,

≤ 2||f ||∞||Γ1Dr∗u||||u||,

≤ 1
2 ||Γ1Dr∗u||2 + 2||f ||2∞||u||2.

(3.63)

It follows that:

1
2D

2
r∗ + 2||f ||2∞ ≥ {f(r∗),Γ1Dr∗} ≥ −1

2D
2
r∗ − 2||f ||2∞.

Exploiting the fact that |g′(r∗)| ≤ C|g(r∗)| for some C > 0, one has:

|(Γ1

i
g′(r∗)Du, u)| ≤ ||g′(r∗)Du||||u||,

≤ 1
4C2 ||g′(r∗)Du||2 + C2||u||2,

≤ 1
4 ||g(r∗)Du||2 + C2||u||2.

(3.64)

We thus conclude that:

1
4g

2(r∗)D2 + C2 ≥ Γ1

i
g′(r∗)D ≥ −1

4g(r
∗)2D2 − C2.

In Equation (3.64), we have used the fact that:

g′2(r∗)D2 ≤ C2g2(r∗)D2.

This follows from the functional calculus, since, if Z is an even function in the second

18. {A, B} denotes the anti-commutator AB + BA of two operators A and B, defined, if necessary, as
a quadratic form.
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variable:
(Z(r∗,D)u, u) =

∑
k,n

∫
Z(r∗, λk,n)||uk,n||2C4dr∗,

u =
∑
k,n

b−1
k,nuk,n, uk,n ∈ [L2(R)]4,

and so inequalities valid for Z pass to the operators, here:

Z(x, y) = g′(x)2y2,

which clearly satisfies: Z(x, y) ≤ C2g(x)2y2. Finally:

|(2g(r∗)Df(r∗)u, u)| =2|(g(r∗)Du, f(r∗)u)|,

≤2||f ||∞||g(r∗)Du||||u||,

≤1
4 ||g(r∗)Du||2 + 4||f ||2∞||u||2.

Thus:
1
4g(r

∗)2D2 + 4||f ||2∞ ≥ 2g(r∗)f(r∗)D ≥ −1
4g(r

∗)2D2 − 4||f ||2∞,

and therefore:
H2

0 ≥ 1
2(D2

r∗ + g(r∗)2D2) − C ′,

where C ′ = 7||f ||2∞ + C2 > 0. Overall :

1
2Q− C ′ ≤ H2

0 ≤ 2Q+ C ′,

which concludes the proof.

Lemma 3.4.7 has the following important consequences:

Corollary 3.4.2. D(H0) ⊂ H1
loc continuously and we have the following criterion for

compactness 19:

If f, χ ∈ C∞(R) then f(r∗)χ(H0) is compact.

In the above corollary, C∞(R) is the set of continuous functions that vanish at infinity.

Corollary 3.4.3. Γ1Dr∗ and g(r∗)D are elements of B(D(H0),H ).

19. The criterion is a consequence of the Rellich-Kondrachov theorem. See for example [Eva10].
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The relationship between the operators Q and H2
0 goes even further. Using similar

arguments to those in [NH04], one can show that:

D(H2
0 ) = D(Q) (3.65)

3.5 Mourre theory

3.5.1 Brief overview

Mourre theory is a very powerful tool for constructing analytical scattering theories.
It has been used in many different situations including the quantum N -particle prob-
lem [DG97] and for scattering of classical fields – with or without spin – in a range of
black-hole type geometries [Häf03; Dau04; NH04]. The theory has been refined since E.
Mourre’s original article [Mou81] following, in particular, the theoretical developments
in [AMG96]. There, it is discussed that one can substitute a certain regularity condi-
tion for some of the technical conditions in Mourre’s original work. We present here a
non-optimal “working” version of the theory. Mourre theory is a very powerful tool for
constructing analytical scattering theories. It has been used in many different situations
including the quantum N -particle problem [DG97] and for scattering of classical fields -
with or without spin- in a range of black-hole type geometries [Häf03; Dau04; NH04]. The
theory has been refined since E. Mourre’s original article [Mou81] following, in particular,
the theoretical developments in [AMG96]. There, it is discussed that one can substitute
a certain regularity condition for some of the technical conditions in Mourre’s original
work. We present here a non-optimal “working” version of the theory.

We begin by making precise the aforementioned regularity condition :

Definition 3.5.1. Let A,H be two self-adjoint operators on a Hilbert space H . We will
say that H ∈ C1(A) if for any u ∈ H the map s 7→ eisA(H − z)−1e−isAu is of class C1 for
a (and therefore all) z ∈ ρ(H).

In other words, Definition 3.5.1 states that, in a certain sense, the resolvent of H evolves
smoothly under the action of A 20. An interesting technical consequence of this regularity

20. This interpretation fits nicely into the Heisenberg picture, where operators evolve instead of the
wave function
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is that (in the form sense) the following equation makes sense on H .

[A, (H − z)−1] = (H − z)−1[H,A](H − z)−1,

we refer to [AMG96] for more details.

Definition 3.5.2. A pair (A,H) of self-adjoint operators on a Hilbert space H such
that H ∈ C1(A) will be said to satisfy a Mourre estimate (with compact error) on some
energy interval I ⊂ R if there is a compact operator K and a strictly positive constant µ
such that:

1I(H)i[H,A]1I(H) ≥ µ1I(H) +K.

This will be written more briefly:

1I(H)i[H,A]1I(H) ≳
K
µ1I(H). (3.66)

The heart of Mourre theory is contained in the following theorem; the statement here
differs from that in Mourre’s original article [Mou81]; here we follow [Dau10; NH04].

Theorem 3.5.1 (Mourre). Suppose that :

1. i[H,A] defined as a quadratic form on D(H) ∩ D(A) extends to an element of
B(D(H),H ),

2. [A, [A,H]] defined as a quadratic form on D(H)∩D(A) extends to a bounded operator
from D(H) to D(H)∗.

3. (A,H) satisfy a Mourre estimate on I ⊂ R.

Then, H has no singular continuous spectrum in I, and H has at most a finite number
of eigenvalues, counted with multiplicity, in I.

When a pair (A,H) satisfy the conditions of Theorem 3.5.1, A will be said to be a
conjugate operator for H on I.

3.5.2 Our conjugate operators

We will now proceed to describe our choice of conjugate operators for H0 and a class
of perturbations of H0 that will include Hp, p ∈ Z + 1

2 . Mourre theory is very flexible in
that the notion of conjugate operator is local in energy but also, using cut-off functions,
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in space-time; this is well-illustrated in [Dau04; NH04]. As a consequence, determining a
candidate for the conjugate operator of a given operator H can be a very creative process,
although in many examples from physics, the generator of dilatations, or minor variations
thereof, is usually a good candidate. We will see that, despite the extreme blackhole
geometry, our case is no exception. As in [Dau04], the full conjugate operator will be a
combination of two operators A+ and A− tailored to deal with the distinct natures of
the geometry at the two asymptotic ends. Throughout the sequel we separate the two
infinities using smooth cut-off functions, j+, j−, j1 satisfying:

j−(t) = 1 if t ≤ −2, j−(t) = 0 if t ≥ −3
2 ,

j+(t) = 1 if t ≥ −1
2 , j+(t) = 0 if t ≤ −1,

j1(t) = 1 if t ≥ −1, j1(t) = 0 if t ≤ −3
2 .

(3.67)

j− and j1 should be chosen such that their supports are disjoint.

At the simple horizon

Near Hr+ , we will follow the treatment in [Dau04] and set:

A+(S) = R+(r∗,D)Γ1, (3.68)

where:

R+(r∗,D) = (r∗ − κ−1 ln |D|)j2
+

(
r∗ − κ−1 ln |D|

S

)
. (3.69)

Since |D| ≥ 1, the same arguments in the proof of [Dau04, Lemma IV.4.4] can be used to
show that:

Lemma 3.5.1. For any S ≥ 1, uniformly in λk, k ∈ N∗:

|R+(r∗, λk)| ≤ C⟨r∗⟩. (3.70)

In the above, C is a positive constant and R+(r∗, λk) denotes the restriction of R+(r∗,D)
to Hk,n.

Despite the strange argument in the cut-off function, this choice is surprisingly simple
and is essentially : Γ1r∗. This is motivated by the observation that, under the unitary

118



3.5. Mourre theory

transformation: U = e−iκ−1 ln(|D|)Dr∗ , the toy model on R+ × S2 given by:

H/ = Γ1Dr∗ + e−κr∗
D + c,

transforms to :
Ĥ/ = Γ1Dr∗ + e−κr∗ D

|D|
+ c.

The commutator with Γ1r∗ is then easily seen to be :

i[Ĥ/,Γ1r∗] = 1 + 2r∗e−κr∗ D

|D|
Γ1.

Restricting to a compact energy interval using χ(H), χ ∈ C∞
0 (R), the second term will

lead to a compact error by Corollary 3.4.2. Note that without the unitary transformation
U the commutator is :

i[H/,Γ1r∗] = 1 + 2r∗e−κr∗
DΓ1.

Here the second term is problematic, as r∗e−κr∗ does not decay faster than e−κr∗ and
hence we cannot control ||r∗e−κr∗

D|| with ||e−κr∗
D||.

Near the double horizon

Let us start our discussion at Hre by motivating the coordinate transformation we
performed in Section 3.4.2.

At the double horizon (r∗ → −∞), the function g appearing in the expression for
H0 decays as O

(
1

−r∗

)
. This is significantly slower than the exponential decay at a simple

horizon, and is similar to the behaviour at space-like infinity in an asymptotically flat
spacetime. In fact, when r∗ → −∞ the principal symbol of H0 formally ressembles:

H̃/ = Γ1Dr∗ − C

r∗D,

which is the massless Dirac operator (for the spinor density) for the asymptotically flat
metric on R∗

− × S2 :

η = dt2 − dr∗2 −
(
r∗

C

)2 1
∆θ

dσ2.

This suggests that we should try to treat the double horizon in a similar manner to space-
like infinity, and in particular that A = 1

2{Dr∗ , r∗} should be a reasonable candidate for
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a conjugate operator there; indeed,

i[H̃/, A] = H̃/. (3.71)

However, had we used the original Boyer-Lindquist like coordinates (t, r, θ, φ), near
r∗ → −∞, we would have been lead to set:

H̃0 = Γ1Dr∗ + g(r∗)D + f̃(r∗),

where f̃ ∈ S0,0 and lim
r∗→−∞

f̃(r∗) = c0p = ap

r2
e + a2 . The corresponding toy model would

hence be : H̃/+ c0p. Since A commutes with constants, we need to modify it to generalise
Equation (3.71). This can be achieved simply by appending Γ1c0r

∗ to A. However, in
doing so, we are immediately confronted to similar issues (that are carefully avoided by
the unitary transformation U) described above at the simple horizon. The solution relies
on the morphism properties of exp and the fact that r∗ek+r∗ = o

r∗→−∞
(1). In our situation,

even if we can imagine trying to exploit the morphism properties of t 7→ 1
t
, with a unitary

transformation such as Ũ = e− i
2 ln |D|{Dr∗ ,r∗}, the error may not be compact simply because

there is no decay left ! The coordinate change performed in Section 3.4.2 circumvents the
problem entirely by shifting the potential to the simple horizon, where we know how to
treat it. In the sequel we set:

A−(S) = 1
2{R−(r∗), Dr∗}, (3.72)

where,
R−(r∗) = j2

−(r
∗

S
)r∗, (3.73)

{ · , · } denotes the anti-commutator and S ≥ 1 is a real parameter.

The conjugate operator AI will vary depending on the energy interval I, in fact we
will show that there is SI ∈ [1,+∞) such that on I either:

A+(SI) + A−(SI) if I ⊂ (0,+∞),

A+(SI) − A−(SI) if I ⊂ (−∞, 0),
(3.74)

is a conjugate operator on I.
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3.5.3 The technical conditions

Despite being the key assumption in Mourre theory, the estimate (3.66) alone is not
sufficient for the conclusion of Theorem 3.5.1. This section is devoted to the proof of the
following results:

Proposition 3.5.1. For any S ≥ 1, A±(S) and A+(S) ± A−(S) are essentially self-
adjoint on S .

Proposition 3.5.2. Let H be an operator on H defined by :

H = hH0h+ V, (3.75)

where 21:

— V is a matrix-valued potential such that V ∈ S1,1

— h ∈ C∞
b (Rr∗×]0, π[) such that h > 0, |h2 − 1| ≤ c < 1, ∂r∗h, ∂θh, h2 − 1 ∈ S1,1.

Any such operator is self-adjoint on H with domain D(H0) by the Kato-Rellich theorem.
Furthermore for any A ∈ {A±(S), A+(S) ± A−(S)} :

1. The quadratic forms i[H,A] and i[[H,A], A] on D(H) ∩D(A) extend to elements of
B(D(H),H ),

2. H ∈ C2(A).

We record here the following useful properties of the operators H defined in the previous
Proposition:

Lemma 3.5.2. D(H2) = D(H2
0 ).

For a proof we refer to [NH04, Lemma 4.6].
We also note that the functions h and V = VC + VS of Hp satisfy slightly better

conditions than those above :

Lemma 3.5.3.

— The function h defined by Equation (3.56) satisfies :

h2 − 1, ∂r∗h, ∂θh ∈ S2,2.

21. These assumptions are not optimal
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— Let VC and VS be as in Equations (3.62) and (3.61) then :

VC ∈ S1,1, VS ∈ S1,2.

We begin our presentation of the proof by remarking that the condition H ∈ C1(A) is
quite difficult to check directly, despite the following characterisation:

Theorem 3.5.2 ( [AMG96, Theorem 6.2.10] ). H ∈ C1(A) if and only if the follow-
ing two conditions are satisfied:

— there is c ∈ R+ such that for all u ∈ D(A) ∩D(H):

|(Au,Hu) − (Hu,Au)| ≤ c(||Hu||2 + ||u||2), (3.76)

— for some z ∈ ρ(H) the set:

{u ∈ D(A), (H − z)−1u ∈ D(A) and (H − z̄)−1u ∈ D(A)},

is a core for A.

To overcome this, there is a useful scheme, based on Nelson’s commutator theorem [RS75,
Theorems X.36, X.37], that greatly simplifies the proof that H ∈ C1(A) in many cases.
We first recall Nelson’s theorem:

Theorem 3.5.3 (Nelson). Let N be a self-adjoint operator with N ≥ 1. Let A be a
symmetric operator with domain D that is also a core for N . Suppose that:

— For some c and all ψ ∈ D,
||Aψ|| ≤ c||Nψ||. (3.77)

— For some d and all ψ ∈ D:

|(Aψ,Nψ) − (Nψ,Aψ)| ≤ d||N
1
2ψ||2. (3.78)

Then A is essentially self-adjoint on D and its closure is essentially self-adjoint on
any other core for N .

Remark 3.5.1. Note that it follows that D(N) ⊂ D(Ā) and A is essentially self-adjoint
on D(N).
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The scheme is to find a third operator N – that we will refer to as the comparison operator
– whose domain is a core for both H and A; which we establish using Nelson’s lemma.
We then seek to apply the following:

Theorem 3.5.4 ( [GL02, Lemma 3.2.2] ). Let (H,H0, N) be a triplet of self-adjoint
operators on H , with N ≥ 1, A a symmetric operator on D(N). Assume that:

1. D(H) = D(H0) ⊃ D(N),

2. D(N) is stable under the action of (H − z)−1,

3. H0 and A satisfy (3.77) and (3.78),

4. for some c > 0 and any u ∈ D(N), (3.76) is satisfied.

Then:

— D(N) is dense in D(A) ∩D(H) with norm ||Hu|| + ||Au|| + ||u||,

— the quadratic form i[H,A] defined on D(A)∩D(H) is the unique extension of i[H,A]
on D(N),

— H ∈ C1(A).

Our proof shall follow this outline.

3.5.4 The comparison operator N

Before identifying the comparison operator N , we begin with an important stability
lemma:

Lemma 3.5.4. For any n ∈ N∗, z ∈ ρ(H0), the domain of ⟨r∗⟩n is stable under the
resolvent (H0 − z)−1 and χ(H0) for any χ ∈ C∞

0 (R). The statement remains true if H0 is
replaced with H.

The proof is identical to that of [Dau04, Proposition IV.3.2] and will not be repeated
here. This lemma is very important for scattering purposes since it is an indication of
how decay rates behave under the action of H, but it also serves to justify the use of the
following comparison operator 22:

N = D2
r∗ + g(r∗)2D2 + ⟨r∗⟩2 = Q+ ⟨r∗⟩2. (3.79)

22. That has an almost uncanny ressemblance to the harmonic oscillator...
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Decomposing H as in Section 3.4.5, Lemma 3.4.4 and equation (3.65) imply that:

D(N) = D(Q) ∩D(⟨r∗⟩2) = D(H2
0 ) ∩D(⟨r∗⟩2). (3.80)

Finally (3.80) and Lemmata 3.5.4 and 3.5.2, together lead to:

∀z ∈ ρ(H0), (H0 − z)−1D(N) ⊂ D(N),

∀z ∈ ρ(H), (H − z)−1D(N) ⊂ D(N).
(3.81)

Thus, the first two conditions of Theorem 3.5.4 are satisfied by the triplet (H,H0, N).

3.5.5 Nelson’s lemma

We will now check that H0 and A±(S) satisfy the hypotheses of Theorem 3.5.3. To
simplify notations, we will omit to specify the dependence on the real parameter S of the
operator A± in this paragraph, as all the results discussed here hold for any S ≥ 1. As a
first step, we deduce immediately the following useful estimates from (3.79):

Lemma 3.5.5. For any u ∈ D(N) :

||Γ1Dr∗u|| ≤ ||N
1
2u||, ||g(r∗)Du|| ≤ ||N

1
2u||,

||r∗u|| ≤ ||N
1
2u||, ||u|| ≤ ||N

1
2u||.

(3.82)

Lemma 3.5.6. With N as comparison operator, H0 satisfies Equations (3.77) and (3.78).

Proof. Fix u ∈ D(N), from Lemma 3.5.5, we have:

||H0u|| ≤ ||Γ1Dr∗u|| + ||g(r∗)Du|| + ||f(r∗)u||,

≤ (2 + ||f ||∞)||N 1
2u||,

≤ (2 + ||f ||∞)||Nu||,

(3.83)

this proves (3.77).

124



3.5. Mourre theory

Moreover:

|([N,H0]u, u)| ≤2|(Γ1r∗u, u)| + 2|(Γ1g′(r∗)g(r∗)D2u, u)|

+ 2||f ′||∞||Dr∗u||||u|| + 2||Dr∗u||||g′(r∗)Du||,

≤2
(
||r∗u||||u|| + C||g(r∗)Du||2

+ ||f ′||∞||Dr∗u||||u|| + C||Dr∗u||||g(r∗)Du||
)
,

≤2(1 + ||f ′||∞ + 2C)||N 1
2u||2.

(3.84)

In (3.84), we have used the fact that there is C ∈ R∗
+ such that:

|g′(r∗)| ≤ C|g(r∗)|,

and the functional calculus as in the proof of Lemma 3.4.7.

In order to establish analogous estimates for A−, we will also need the following esti-
mates:

Lemma 3.5.7. For any u ∈ D(N),

||r∗2u||2 ≤ ||Nu||2 + ||u||2,

||Qu||2 ≤ ||Nu||2 + ||u||2.
(3.85)

Proof. As usual, we will prove it for u ∈ S . One has:

||Nu||2 =(N2u, u)

=||Qu||2 + ||r∗2u||2 + ||u||2 + (Qu, r∗2u)

+ (r∗2u,Qu) + 2(Qu, u) + 2||r∗u||2.

(3.86)

Since, for any v ∈ D(Q), (Qv, v) = ||Γ1D2
r∗v||2 + ||g(r∗)Dv||2 ≥ 0, it follows that:

||Nu||2 ≥ ||Qu||2 + ||r∗2u||2 + ||u||2 + (Qu, r∗2u) + (r∗2u,Qu). (3.87)

Now,
(Qu, r∗2u) = (r∗Qu, r∗u) = (Qr∗u, r∗u) + (2iDr∗u, r∗u), (3.88)
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and so, adding the hermitian conjugate (r∗2u,Qu), one obtains:

(Qu, r∗2u) + (r∗2u,Qu) = 2(Qr∗u, r∗u) + (2ir∗Dr∗u, u) − (2iDr∗r∗u, u)

= 2(Qr∗u, r∗u) − 2||u||2 ≥ −2||u||2.

Hence,

||Nu||2 ≥ ||Qu||2 + ||r∗2u||2 − ||u||2. (3.89)

Lemma 3.5.8. There is a constant d > 0 such that for any u ∈ D(Q) = D(H2
0 ),

||D2
r∗u||2 ≤ d(||Qu||2 + ||u||2). (3.90)

Proof. As quadratic forms on S :

Q2 =D4
r∗ + (g2(r∗)D2)2 +D2

r∗g2(r∗)D2 + g2(r∗)D2D2
r∗ ,

=D4
r∗ + (g2(r∗)D2)2 + 2Dg(r∗)D2

r∗g(r∗)D

+ [D2
r∗ , g(r∗)]g(r∗)D2 − g(r∗)D2[D2

r∗ , g(r∗)],

≥D4
r∗ + (g2(r∗)D2)2 + [[D2

r∗ , g], g]D2,

=D4
r∗ + (g2(r∗)D2)2 − i[{Dr∗ , g′}, g(r∗)]D2,

=D4
r∗ + (g2(r∗)D2)2 − 2(g′(r∗))2D2,

≥D4
r∗ + (g2(r∗)D2)2 − 2C2g(r∗)2D2,

≥D4
r∗ + 1

2(g2(r∗)D2)2 − 2C4,

≥D4
r∗ − 2C4.

(3.91)

where we have used the fact that |g′(r∗)| ≤ C|g(r∗)|.

Combining Lemmata 3.5.7 and 3.5.8 yields:

Corollary 3.5.1. r∗2, D2
r∗ ∈ B(D(N),H ).

We are now ready to prove:

Lemma 3.5.9. A− satisfies (3.77) and (3.78).
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Proof. Until now we have not discussed the domain of A− and will simply consider it as
being defined for u ∈ S , which is a core for N . Then, the following estimates hold:

||A−u||2 =(R−(r∗)Dr∗u,R−(r∗)Dr∗u) + 1
4 ||R′

−(r∗)u||2

− 1
2
(
(R−(r∗)Dr∗u, iR′

−(r∗)u) + (iR′
−(r∗)u,R−(r∗)Dr∗u)

)
,

≤(R−(r∗)Dr∗u,R−(r∗)Dr∗u) + ||R′
−(r∗)R−(r∗)u||||Dr∗u|| + 1

4 ||R′
−(r∗)u||2.

Since R′
−(r∗) is a bounded operator, using Lemma 3.5.5 one can see that:

||R′
−(r∗)R−(r∗)u||||Dr∗u|| + 1

4 ||R′
−(r∗)u||2 ≤ ||R′

−||∞||N
1
2u||2 + 1

4 ||R′
−||2∞||u||2

≤ ||R′
−||∞(1 + ||R′

−||∞)||Nu||2.

Moreover, by Lemmata 3.5.7 and 3.5.8:

|(R−(r∗)Dr∗u,R−(r∗)Dr∗u)| = |(R2
−(r∗)u,D2

r∗u) + 2(iR′
−(r∗)R−(r∗)u,Dr∗u)|

≤
√

6d||Nu||2 + 2||R′
−||∞||Nu||2.

Combining the above gives (3.77). To prove (3.78) we start with the following estimates:

|([N,A−]u, u)| =
∣∣∣∣∣(− i

2(R(3)
− (r∗)u, u) − i({D2

r∗ , R′
−(r∗)}u, u)

+ 2i(r∗2j2
−(r

∗

S
)u, u) + (2ig′(r∗)g(r∗)R−(r∗)D2u, u)

∣∣∣∣∣,
=
∣∣∣∣∣− i({Dr∗ , R′

−(r∗)Dr∗}u, u) − 1
2({Dr∗ , R′′

−(r∗)}u, u)

+ 2i(r∗2j2
−(r

∗

S
)u, u) + (2ig′(r∗)g(r∗)R−(r∗)D2u, u)

∣∣∣∣∣,
≤2||Dr∗u||

(
||R′||∞||Dr∗u|| + 1

2 ||R′′||∞||u||
)

+ 2||j−(r
∗

S
)r∗u||2 + 2||g(r∗)Du||||g′(r∗)R−(r∗)Du||.

The only term that may pose problem is:

||R−(r∗)g′(r∗)Du||. (3.92)
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However,

R−(r∗)g′(r∗) = g(r∗)j2
−(r∗)r∗

 ∆′
r

2
Ξ(r2 + a2) − 2r∆r

Ξ(r2 + a2)2

 , (3.93)

and the term between brackets is O
r∗→−∞

( 1
r∗ ) because when r∗ → −∞, r approaches re, the

double root of ∆r, hence, both ∆r and ∆′
r are at least O

r→x
(r−re) and r−re = O

r∗→−∞
( 1
r∗ ) 23.

In conclusion, there is C ∈ R∗, |R−(r∗)g′(r∗)| ≤ C|g(r∗)| and thus, by the functional
calculus:

||R−(r∗)g′(r∗)Du|| ≤ C||g(r∗)Du||. (3.94)

Overall,

|([N,A−]u, u)| ≤
(
||R′′

−||∞ + 2
(
||R′

−||∞ + C + 1
))

||N
1
2u||2 (3.95)

According to the above result, we can conclude that A− is essentially self-adjoint on
D(N); the analogous result for A+ is proved in [Dau04, Lemma IV.4.5], the arguments
are identical. Theorem 3.5.3 also applies to A = A+ ± A−. In all cases, we will consider
the operators and their domains as being defined by the conclusion of Theorem 3.5.3.

3.5.6 Proof that H0, H ∈ C1(A)

In order to prove that H,H0 ∈ C1(A), we require one more estimate that will be the
object of this section. According to Theorem 3.5.4 it is sufficient to prove that for some
c > 0 and any u ∈ D(N) one has the estimate:

|(Hu,A±u) − (A±u,Hu)| ≤ c(||Hu||2 + ||u||2). (3.96)

As before, we will focus our attention on A− and refer to [Dau04, Lemma IV.4.7] for A+.
In order to apply Mourre theory, we will additionally need to show that i[H,A] extends
to a bounded operator from D(H) = D(H0) 24 to H . Both of these are covered by the
following estimates, established, first, on the common core S ; we begin with H0.

23. Note that in (3.93) ∆′
r = ∂∆r

∂r
24. This equality is to be understood to imply that the graph norms are equivalent.
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Let u ∈ S , then:

||i[H0, A−]u|| =
∥∥∥Γ1R′

−(r∗)Dr∗u− i

2Γ1R
′′

−(r∗)u−R−(r∗)g′(r∗)Du−R−(r∗)f ′(r∗)u
∥∥∥,

≤||R′
−||∞||Dr∗u|| + 1

2 ||R′′
−||∞||u|| + ||R−(r∗)g′(r∗)Du|| + ||R−f

′||∞||u||.

Using (3.94) and Corollary 3.4.3, we thus conclude that for some c > 0 and any u ∈ S :

||i[H0, A−]u|| ≤ c(||H0u|| + ||u||). (3.97)

Hence, i[H0, A−] extends uniquely to an element of B(D(H0),H ) and (3.96) holds. In
order to establish the analogous result for H, we write:

[H,A−] = h[H0, A−]h+ i(hH0R−(r∗)h′ +R−(r∗)h′H0h) + iR−(r∗)V ′.

Since h,R′
−(r∗) ∈ B(D(H0)), h[H0, A−]h andR′

−(r∗)h′H0h extend to elements ofB(D(H0),H ).
For similar reasons to h,R−(r∗)h′ ∈ B(D(H0)) also, and, using Equation (3.43),R−(r∗)V ′ ∈
B(H ). It follows then that [H0, A−] extends to a bounded operator D(H0) → H .

Assembling all the results above, we have thus shown that H0, H ∈ C1(A) and that
the first two assumptions of Theorem 3.5.1 are satisfied. It remains to verify the final
assumption regarding the double commutator.

3.5.7 The double commutator assumption

Theorem 3.5.1 only requires that the double commutator extends to a bounded op-
erator from D(H) to D(H)∗, this section will be devoted to showing a slightly stronger
result:

Lemma 3.5.10. [A, [A,H0]] and [A, [A,H]] extend to elements of B(D(H),H ).

The consequence will be that H and H0 are in fact C2(A) (see [AMG96, Chapter 5]),
proving the final point of Propostion 3.5.2. Beginning with H0, it is sufficient to prove
this for the four double commutators [A±, [A±, H0]] separately; we will mainly concentrate
on A−, but it will also be informative to consider the mixed terms [A±, [A∓, H0]].
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(a) [[H0, A−], A−] A short calculation shows that:

(−i)[i[H0, A−], A−] =(−i)
(

− 1
2Γ1R′

−(r∗)R′′
−(r∗) − i(R′

−(r∗))2Γ1Dr∗

+ iR−(r∗)R′′
−(r∗)Γ1Dr∗ − i

2Γ1R−(r∗)R′′′(r∗)

− iR−(r∗)
(
(R−(r∗)g′(r∗))′D + (R−(r∗)f ′(r∗))′

))
.

(3.98)

Many of the terms in (3.98) extend clearly to elements of B(D(H),H ), either because
they are bounded on H or using Corollary 3.4.3. The term that merits comment is
underlined; it expands as follows:

R−(r∗)g′′(r∗)D +R′
−(r∗)g′(r∗)D. (3.99)

We have already shown how to deal with the second term, and the first is treated very
similarly as it is easily seen that |g′′(r∗)| ≤ C|g(r∗)| for some C ∈ R∗

+.

(b) [i[H0, A−], A+] This double commutator, as a quadratic form on S , can be computed
as:

(−i)[i[H0, A−], A+] =(−i)
(
[Γ1R′

−(r∗)Dr∗ , A+] − 2R−(r∗)g′(r∗)R+(r∗,D)Γ1D
)
.

The first term vanishes, since on S it can be evaluated as:

[Γ1R′
−(r∗)Dr∗ , A+] = −R′

−(r∗)R′
+(r∗,D),

and j+ and j− have disjoint support (cf. (3.67)). The second term, which, on first glance,
seems difficult to control, will equally vanish entirely due to our choice cut-off functions
j+, j−, j1. To see this, recall that:

R+(r∗,D) = (r∗ − κ−1 ln |D|)j2
+

(
r∗ − κ−1 ln |D|

S

)
.

Hence, since j1 satisfies j1(t) = 1, t ≥ −1, then:

R+(r∗,D) = j2
1(r

∗

S
)R+(r∗,D). (3.100)
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It follows that:

2R−(r∗)g′(r∗)R+(r∗,D)Γ1D = 2R−(r∗)j2
1(r

∗

S
)g′(r∗)R+(r∗,D)Γ1D,

but, j− and j1 are chosen such that supp j− ∩ supp j1 = ∅, therefore this term vanishes.

(c) [i[H0, A+], A−] Here, we start from 25:

i[H0, A+] = R′
+(r∗,D) + 2ig(r∗)DR+(r∗,D)Γ1,

this leads to:

[i[H0, A+], A−] = R
′′

+(r∗,D)R−(r∗) + 2i (g(r∗)R+(r∗,D))′ R−(r∗)DΓ1.

Since (3.100) is equally true if R+(r∗,D) is replaced by its first or second derivative with
respect to r∗, one can argue as before and find that this double commutator vanishes
entirely. We refer to [Dau04] for the appropriate treatment of [[H0, A+], A+].

This concludes the proof that (H0, A) satisfies the first hypotheses of Mourre theory.
To show that this is equally true of (H,A), we proceed as before using (3.60). For example:

[[H,A−], A−] = h[[H0, A−], A−]h+ 2ih[H0, A−]R−(r∗)h′

+ 2iR−(r∗)h′[H0, A−]h− 2h′R−(r∗)H0R−(r∗)h′

− hH0R(r∗)(R−(r∗)h′)′ −R−(r∗)(R−(r∗)h′)′H0h−R−(r∗)(R−(r∗)V ′)′.

This extends to an element of B(D(H),H ), thanks to the decay of h′, V ′, etc. Similar
computations show that this is equally true of the other double commutators. The reader
may be concerned that a long-range potentiel may jeopardise our efforts in the mixed
commutators, causing unbounded terms to appear. However, this is not the case since
either commutation with A− introduces the necessary decay through differentiation or
terms vanish entirely due to the choice that j1 and j− have disjoint supports. For the first
point, more precisely, if, for instance, f ∈ S (R), then :

[f(r∗), A−] = iR−(r∗)f ′(r∗).

25. In this equation R′(r∗,D) denotes the operator obtained after differentiating with respect to r∗
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In all cases encountered, f , when expressed as a function of r, has bounded derivative
and therefore, at least, [f(r∗), A−] = O( 1

r∗ ).

3.5.8 Mourre estimates for H0

We shall now move on to derive Mourre inequalities, naturally, we will treat Hre and
Hr+ separately.

Near the double horizon

We begin with:

Lemma 3.5.11. Let χ ∈ C∞
0 (R) then for any S ≥ 1;

χ(H0)i[H0, A−(S)]χ(H0) ∼
K
χ(H0)j−(r

∗

S
)H0j−(r

∗

S
)χ(H0), (3.101)

where ∼
K

is used to denote equality up to a compact error.

Proof. One has:

i[H0, A−(S)] =Γ1R′
−(r∗)Dr∗ − i

2Γ1R
′′

−(r∗) −R−(r∗)g′(r∗)D −R−(r∗)f ′(r∗)

=j−(r
∗

S
)Γ1Dr∗j−(r

∗

S
) + 2r∗j−(r

∗

S
)j′

−(r
∗

S
)Γ1Dr∗

− i

S
j′

−(r
∗

S
)j−(r

∗

S
) − ir∗

S2 (j′
−(r

∗

S
))2

− ir∗

S2 j
′′

−(r
∗

S
)j−(r

∗

S
) −R−(r∗) (g′(r∗)D + f ′(r∗)) .

(3.102)

Note that if 0 ≤ χ ≤ 1 is a smooth function with compact support in R, since j′ has
compact support, Corollary 3.4.2 implies that the terms underlined above will only lead
to compact terms in χ(H0)i[H0, A−(S)]χ(H0), consequently:

χ(H0)i[H0, A−(S)]χ(H0) ∼
K
χ(H0)

(
j−(r

∗

S
)Γ1Dr∗j−(r

∗

S
) + 2r∗j−(r

∗

S
)j′

−(r
∗

S
)Γ1Dr∗

−R−(r∗) (g′(r∗)D + f ′(r∗))
)
χ(H0). (3.103)

Using Corollary 3.4.3, one can show that 2r∗j−( r∗

S
)j′

−( r∗

S
)Γ1Dr∗χ(H0) is also compact.
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Indeed, let γ(r∗) = 2r∗j−( r∗

S
)j′

−( r∗

S
) and note that γ ∈ C∞

0 (R). For any u ∈ H , one has:

γ(r∗)Γ1Dr∗χ(H0)u = Γ1Dr∗γ(r∗)χ(H0)u+ iΓ1γ′(r∗)χ(H0)u. (3.104)

Corollary 3.4.3 implies that there is C1 > 0 such that for any u ∈ D(H0).

||Γ1Dr∗u|| ≤ C1(||H0u|| + ||u||).

Hence:
||γ(r∗)Γ1Dr∗χ(H0)u|| ≤ ||Γ1Dr∗γ(r∗)χ(H0)u|| + ||γ′(r∗)χ(H0)u||,

≤ C1||H0γ(r∗)χ(H0)u|| + C1||γ(r∗)χ(H0)u||

+ ||γ′(r∗)χ(H0)u||,

≤ C1||γ(r∗)H0χ(H0)u|| + C1||γ(r∗)χ(H0)u||

+ (1 + C1)||γ′(r∗)χ(H0)u||.

According to Corollary 3.4.2 the operators γ(r∗)H0χ(H0), γ(r∗)χ(H0) and γ′(r∗)χ(H0) are
all compact and so it follows from a simple extraction argument that γ(r∗)Γ1Dr∗χ(H0)
must be too. Thus:

χ(H0)i[H0, A−(S)]χ(H0) ∼
K
χ(H0)j−(r

∗

S
)Γ1Dr∗j−(r

∗

S
)

−R−(r∗) (g′(r∗)D + f ′(r∗))χ(H0). (3.105)

Now, (3.105) can be rewritten:

χ(H0)i[H0, A−(S)]χ(H0) ∼
K
χ(H0)j−(r

∗

S
)H0j−(r

∗

S
)χ(H0)

− χ(H0)j2
−(r

∗

S
) (g(r∗) + r∗g′(r∗))Dχ(H0)

− χ(H0)j2
−(r

∗

S
) (f(r∗) + r∗f ′(r∗))χ(H0).

Since f(r∗) + r∗f ′(r∗) → 0 when r∗ → −∞, it follows from Corollary 3.4.2 that the
terms in the last line of the previous equation are compact. The compactness of those on
the middle line is also a consequence of Corollary 3.4.2, because near the double horizon
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r∗ → − ∞ (r → re) one has:

r∗g′(r∗) + g(r∗) =
(

1 + r∗

Ξ(r2
e + a2)

∆′
r

2 +O
( 1
r∗

))
g(r∗),

and:

∆′
r = 2l2(r − re)(re − r−)(r+ − re) +O((r − re)2),

= −2(3Mre − 4a2)(r − re)
r2
e

+O((r − re)2).

Using (3.16) we obtain that:

∆′
r = −2(r2

e + a2)Ξ
r∗ + o( 1

r∗ ).

From which it follows:
r∗g′(r∗) + g(r∗) = o(g(r∗)). (3.106)

Therefore, there is a continuous function ε ∈ C∞(R) such that:

||j2
−(r

∗

S
)(r∗g′(r∗) + g(r∗))Dχ(H0)|| = ||g(r∗)Dε(r∗)χ(H0)||,

≤ ||H0ε(r∗)χ(H0)|| + ||ε(r∗)χ(H0)||.

Compactness then follows with a similar argument as before.

We are now ready to prove:

Proposition 3.5.3. Let χ be of a compact support contained in (0,+∞) and µ > 0 be
such that suppχ ⊂ [µ,+∞) then for any S ≥ 1:

χ(H0)i[H0, A−(S)]χ(H0) ≳
K
µχ(H0)j2

−(r
∗

S
)χ(H0). (3.107)

The result holds also if suppχ ⊂ (−∞, 0), if we replace A−(S) by −A−(S).

Proof. Using Lemma 3.5.11, it is sufficient to prove that:

χ(H0)j−(r
∗

S
)H0j−(r

∗

S
)χ(H0) ≳

K
µχ(H0)j2

−(r
∗

S
)χ(H0).
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Our first step is to note that, although χ(H0) and j−( r∗

S
) do not commute, their commu-

tator is a compact operator. This can be seen using the Helffer-Sjöstrand formula [HS87,
Proposition 7.2] 26, for one has:

[
χ(H0), j−(r

∗

S
)
]

= i

2π

∫
C
∂z̄χ̃(z)[(H0 − z)−1, j−(r

∗

S
)]dz ∧ dz̄,

= − i

2π

∫
∂z̄χ̃(z)(H0 − z)−1[H0, j−(r

∗

S
)](H0 − z)−1dz ∧ dz̄. (3.108)

The second equation makes sense since j−( r∗

S
) is bounded and [H0, j−( r∗

S
)] extends to a

bounded operator on H . Furthermore, the integral exists in the norm topology, so the
compactness of the commutator follows from that of the integrand which, again, is a
consequence of Corollary 3.4.2 since:

[H0, j−(r
∗

S
)] = − i

S
Γ1j′

−(r
∗

S
).

Now χ(H0)j−( r∗

S
)H0j−( r∗

S
)χ(H0) is equal to

j−(r
∗

S
)χ(H0)H0χ(H0)j−(r

∗

S
)

+j−(r
∗

S
)χ(H0)H0[j−(r

∗

S
), χ(H0)] + [χ(H0), j−(r

∗

S
)]H0j−(r

∗

S
)χ(H0).

The underlined terms form a symmetric compact operator and denoting 27 E the operator-
valued spectral measure, for any u ∈ H :

(j−(r
∗

S
)χ(H0)H0χ(H0)j−(r

∗

S
)u, u) = (χ(H0)H0χ(H0)j−(r

∗

S
)u, j−(r

∗

S
)u),

=
∫
tχ2(t)(E(dt)j−(r

∗

S
)u, j−(r

∗

S
)u),

≥ µ(j−(r
∗

S
)χ(H0)2j−(r

∗

S
)u, u).

In other words:

j−(r
∗

S
)χ(H0)H0χ(H0)j−(r

∗

S
) ≥ µj−(r

∗

S
)χ(H0)2j−(r

∗

S
),

≳
K
µχ(H0)j2

−(r
∗

S
)χ(H0),

(3.109)

26. See also Appendix B.1
27. following the notations of [Lax02].
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where we have used once more the compactness of the commutator [χ(H0), j−( r∗

S
)]. Similar

arguments prove the final point.

At the simple horizon

The decomposition of the Hilbert space constructed in Section 3.4.3 and the results
discussed there concerning the properties of the eigenvalues, mean that the proof of the
Mourre estimate at the simple horizon in [Dau04], applies to our case without any essential
modification. Hence we quote without proof:

Proposition 3.5.4 ( [Dau04, Lemma IV.4.11] ). Let λ0 ∈ R, then there are χ ∈
C∞

0 (R) such that λ0 ∈ suppχ and µ ∈ R∗
+ such that:

χ(H0)i[H0, A+(S)]χ(H0) ≳
K
µχ(H0)j2

1(r
∗

S
)χ(H0), (3.110)

for large enough S ∈ R∗
+.

Remark 3.5.2. It is interesting to remark the difference in the formulation of Proposi-
tions 3.5.3 and 3.5.4. Only the latter truly restricts the size of the neighbourhood on
which we have a Mourre estimate, Proposition 3.5.3 on the other hand, simply forbids a
Mourre estimate on a neighbourhood of 0.

Combining the two previous results leads to:

Proposition 3.5.5. Let λ0 ∈ R∗:

— If λ0 > 0, then one can find an interval I ⊂ (0,+∞) containing λ0 and µ > 0 such
that:

1I(H0)i[H0, A+(S) + A−(S)]1I(H0) ≳
K
µ1I(H0), (3.111)

for large enough S ∈ R∗
+.

— If λ0 < 0, then one can find an interval I ⊂ (−∞, 0) containing λ0 and µ > 0 such
that:

1I(H0)i[H0, A+(S) − A−(S)]1I(H0) ≳
K
µ1I(H0), (3.112)

for large enough S ∈ R∗
+.
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3.5.9 Mourre estimate for H

Now that we have at our disposition a Mourre estimate for H0, we can deduce from
it Mourre estimates for any operator H satisfying (3.75). Their spectral theory is closely
related to that of H0 as illustrated by the following lemma.

Lemma 3.5.12. For any χ ∈ C∞
0 (R), (H0 − i)−1 − (H − i)−1 and χ(H0) − χ(H) are

compact. In particular, H0 and H have the same essential spectrum.(Weyl’s Theorem).

Proof. One has for any z ∈ C \ R:

(H0 − z)−1 − (H − z)−1 = (H − z)−1(H −H0)(H0 − z)−1,

= (H − z)−1((h2 − 1)H0 + Ṽ )(H0 − z)−1,

for some matrix Ṽ whose coefficients are in C∞(R). Compactness of (H0 − i)−1 −(H− i)−1

is, once more, a consequence of Corollary 3.4.2. That of χ(H0) − χ(H) follows from this
since the Helffer-Sjöstrand formula 28 leads to:

χ(H) − χ(H0) = i

2π

∫
∂z̄χ̃(z)

(
(H − z)−1 − (H0 − z)−1

)
dz ∧ dz̄, (3.113)

the integral converges in norm so compactness of the integrand implies that of the integral.

An immediate consequence of Lemma 3.5.12 is that for any χ ∈ C∞
0 (R):

χ(H)[iH,A(S)]χ(H) ∼
K
χ(H0)[iH,A(S)]χ(H0). (3.114)

Now, writing H = H0 + (h2 − 1)H0 + h[H0, h] + V , let us consider:

χ(H0)[(h2 − 1)H0 + h[H0, h] + V,A±(S)]χ(H0),

we will in fact find that it is compact, so that:

χ(H)[iH,A]χ(H) ∼
K
χ(H0)[iH0, A]χ(H0). (3.115)

We recall our main tool:

Corollary 3.5.2. Corollary 3.4.2, Section 3.4.

28. see [HS87, Proposition 7.2]
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If f, χ ∈ C∞ then f(r∗)χ(H0) is compact.

To simplify notations we drop the dependence on S of the operator A−. Consider first:

[(h2 − 1)H0, A±] = (h2 − 1)[H0, A±] − [A±, h
2 − 1]H0. (3.116)

(h2−1) ∈ S1,1 so, by Corollary 3.4.2, (h2−1)χ(H0) is compact. Therefore, so is: χ(H0)(h2−
1) = ((h2 − 1)χ(H0))∗. Since [H0, A±] ∈ B(D(H0),H ), we conclude that χ(H0)(h2 −
1)[H0, A±]χ(H0) is compact. Moreover:

[A−, h
2 − 1] = −iR−(r∗)2hh′ ∈ S∞,1,

so [A−, h
2 − 1]χ(H0) is also compact.

Next we consider the term:

[A+, h
2 − 1] = Γ1(R+(r∗,D)(h2 − 1) − ((R+(r∗,D)(h2 − 1))∗).

Note that:
R+(r∗,D)(h2 − 1) = R+(r∗,D)⟨r∗⟩−1⟨r∗⟩(h2 − 1),

= R+(r∗,D)⟨r∗⟩−1j2
1(r

∗

S
)⟨r∗⟩(h2 − 1).

The last equality is a consequence of the choice of support of j1 and j+: recall that j1(t) = 1
for t ≥ −1 and r∗ ≥ −S when j+( r

∗−κ−1 ln |D|
S

) ̸= 0 so j2( r∗

S
) = 1 whenever the term is

non-zero. ⟨r∗⟩j2
1( r∗

S
)(h2 − 1)χ(H0) is therefore compact because j2

1( r∗

S
)(h2 − 1) ∈ S1,∞.

Additionally, Lemma 3.5.1 implies that R+(r∗,D)⟨r∗⟩−1 extends to a bounded operator
on H . The compactness of χ(H0)[(h2 − 1)H0, A±]χ(H0) follows. The term:

[V,A+] = [V R+(r∗,D)Γ1 − Γ1R+(r∗,D)V ],

is treated identically:

R+(r∗,D)V = R+(r∗,D)⟨r∗⟩−1⟨r∗⟩j2
1(r

∗

S
)V,
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and j2
1( r∗

S
)V ∈ S1,∞ so R+(r∗,D)V χ(H0) is compact. Lastly using:

[V,A−] = iR−(r∗)V ′ ∈ S∞,1,

h[H0, h] = −ih(Γ1∂r∗h+
√

∆θg(r∗)Γ2∂θh),

[h[H0, h], A−] =R−(r∗)
[
h′(Γ1h′ + Γ2

√
∆θg(r∗)∂θh) + hΓ1∂2

r∗h

+ hΓ2
√

∆θg(r∗)∂r∗∂θh+ hΓ2
√

∆θg
′(r∗)∂θh

]
∈ S∞,1,

[h[H0, h], A+] = −iΓ1[h∂r∗h,R+(r∗,D)] − i[h
√

∆θg(r∗)Γ2∂θh,Γ1R+(r∗,D)].

and similar arguments as before, we conclude that the remaining terms are also compact.
Therefore, we have proved the following:

Proposition 3.5.6. Let H be an operator defined by (3.75), then the conclusion of Propo-
sition 3.5.5 is true with H in place of H0.

3.5.10 Propagation estimates and other consequences of the Mourre
estimate

On the spectrum of H0 and H

The first important consequence of the estimate above is that Theorem 3.5.1 applies to
H and H0, on any interval disjoint from {0}. Hence, H and H0 have no singular continuous
spectrum and all eigenvalues, other than possibly 0, are of finite multiplicity. In fact, H0

has no eigenvalue, as the following classical “Grönwall lemma” argument shows.

Proof that H0 has no pure point spectrum. We only need to seek eigenvalues for H0 on
each of the subspaces Hk,n, which, we recall, can be identified with [L2(R)]4. Let λ ∈ R
and suppose that u ∈ [L2(R)]4 satisfies:

Hk,n
0 u =

(
λ+ ap

r2
+ + a2 − ap

r2
e + a2

)
u,

then u ∈ [H1(R)]4 and u vanishes at infinity. This is also true of the function w : r∗ 7→
e−iΓ1λr∗

u(r∗). w additionally satisfies:

w′(r∗) = e−iΓ1λr∗(−iΓ1)(λu(r∗) − Γ1Dr∗u(r∗)),

= e−iΓ1λr∗(−iΓ1)I(r∗)eiΓ1λr∗
w(r∗),
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where: I(r∗) =
(

−λkg(r∗)Γ2 + f(r∗) −
(

ap
r2

++a2 − ap
r2

e+a2

))
. From this, we deduce:

||w(r∗)|| ≤
∫ +∞

r∗
∥I(r∗)∥ ||w(r∗)|| dr∗,

Because ||I|| is integrable near +∞, it follows from the integral form of Grönwall’s lemma
that w = 0 and therefore u = 0.

Using the separability of the Dirac equation in Kerr-de Sitter, a modified version of this
argument shows that the full Dirac operator has no eigenvalues, we refer to [BC09]. We
summarise these conclusions in the following lemma:

Lemma 3.5.13. Let H be an operator defined by (3.75) then:

— H has no singular continuous spectrum,

— σess(H) = R,

— σpp(H) ⊂ {0} and if 0 is an eigenvalue then it has infinite multiplicity. 29

Strict Mourre estimates

Let H ∈ C1(A), (H,A) is said to satisfy a strict Mourre estimate on some interval
I ⊂ R, if it satisfies a Mourre estimate with vanishing compact error. This slightly stricter
condition will be required shortly for the important conclusion of Theorem 3.5.5. Never-
theless, if (H,A) satisfies a Mourre estimate on some open interval I ⊂ R, then for any
λ ∈ I that is not an eigenvalue ofH, one can find a small neighbourhood J = (−ε+λ, λ−ε)
of λ ∈ I such that it satisfies a strict Mourre estimate on J . To see this we give a simpli-
fied version of the argument in the proof of [AMG96, Lemma 7.2.12]: let, for any n large
enough such that (− 1

n
+ λ, λ+ 1

n
) ⊂ I, En = E((− 1

n
+ λ, λ+ 1

n
)); where E is the spectral

measure of H. Then:
s – lim
n→∞

En = E({λ}) = 0,

as λ is not an eigenvalue. It follows that for any compact operator K:

lim
n→∞

EnKEn = 0.

29. σpp(H), the pure-point spectrum, is the set of all eigenvalues of H. It is not to be confused with
the discrete spectrum, σdisc(H) = R \ σess(H), the set of all isolated eigenvalues with finite multiplicity.
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Therefore, if ε > 0, one can find N , such that for any n ≥ N :

|(EnKEn|x) ≤ ε||x||2,

so that for n ≥ N :
EnKEn ≥ −ε ⇒ EnKEn ≥ −εEn.

Hence, if 1I(H)i[H,A]1I(H) ≥ µ+K, then:

Eni[H,A]En ≥ (µ− ε)En.

Consequently, on small enough intervals around any non-eigenvalue, one has a strict
Mourre estimate for any ν ∈ (0, µ).

In the case of H and H0, the only possible eigenvalue is 0. All our estimates avoid this
point, therefore they can all be upgraded to strict estimates on small enough intervals
around any point of R∗.

Minimal velocity estimate

One of the most powerful consequences of the hypotheses of Mourre theory, largely
discussed and optimised in [AMG96], is that it leads to a (generalised) limiting absorption
principle. In our case, thanks to Proposition 3.5.2, H0, H ∈ C2(A), and we directly have
access to an abstract propagation estimate due to Sigal-Soffer [SS88]:

Theorem 3.5.5. Let (H,A) be a pair of self-adjoint operators on a Hilbert space H .
Suppose that A is a conjugate operator for H on I ⊂ R and that H ∈ C1+ε(A), (ε ∈ R∗

+).
Let µ ∈ R∗

+ be such that:

1I(H)i[H,A]1I(H) ≥ µ1I(H).

Then, for any b, χ ∈ C∞
0 (R) such that suppχ ⊂ I and supp b ⊂ (−∞, µ) one has:

∀u ∈ H ,
∫ +∞

1

∥∥∥∥b(At
)
χ(H)e−iHtu

∥∥∥∥2 dt
t

≤ C||u||2,

s – lim
t→+∞

b
(
A

t

)
χ(H)e−iHt = 0.

(3.117)

The importance of Theorem 3.5.5 is more obvious when the conjugate operator can be
replaced by simpler operators that help to understand the propagation of fields. In [Dau10,
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Lemma IV.4.13], it is shown that in the case of the operators under consideration here,
A can be replaced with |r∗|, and we obtain:

Proposition 3.5.7. Let χ ∈ C∞
0 (R) such that suppχ ∩ {0} = ∅, then for any H defined

by Equation (3.75), there are εχ, C ∈ R∗
+ such that for any ψ ∈ H :

∫ ∞

1

∥∥∥∥∥1[0,εχ]

(
|r∗|
t

)
χ(H)e−itHψ

∥∥∥∥∥
2
dt

t
≤ C||ψ||2. (3.118)

Furthermore:
s – lim
t→+∞

1[0,εχ]

(
|r∗|
t

)
χ(H)e−itH = 0. (3.119)

This “minimal velocity estimate” means that, given a certain energy interval, all fields
with energy in that interval, must be outside of the “cone” {|r∗| < εIt} at late times; it
will be crucial to the construction of the wave operators.

Maximal velocity estimate

Independently of Mourre theory, one can show that we also have a natural “maximal
velocity estimate”, that is a consequence of the geometry:

Proposition 3.5.8. Let δ ∈ (0, 1), b ∈ C∞
0 (R) be such that supp b ∩ [−1 − δ, 1 + δ] = ∅,

then there is some constant C ∈ R∗ such that for any u ∈ H :

∫ +∞

1

∥∥∥∥b(r∗

t
)e−itHu

∥∥∥∥2 dt

t
≤ C||u||2. (3.120)

Furthermore, for any b ∈ C∞(R) such that b ≡ 0 on [−1 − δ, 1 + δ] and b = 1 for |r| large,
then:

s – lim
t→∞

b(r
∗

t
)e−itH = 0 (3.121)

The proof is identical to that of [Dau04, Proposition IV.4.4].

What of t → −∞?

Up to now, we have only discussed estimates in the far future, and have said nothing
of the far past. After thorough inspection, one can convince onself that all the results
here hold for −H (the conjugate operator should also be replaced by its opposite), but,
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there is a faster way to see this. The Kerr-de Sitter metric (3.5) is invariant under the
simultaneous substitutions:

t → −t a → −a.

This is intuitively reasonable because a time reversed black-hole will rotate in the opposite
way. Consequently, all the results in the section have suitable analogs at t → −∞.

3.6 Intermediate wave operators

3.6.1 Overall strategy

In this section our goal is to show that, despite the long-range non-spherically sym-
metric potentials at the double horizon, it is still possible to reduce the scattering problem
to a 1-dimensional one. To this end, we introduce the following operators:

H1 = H0 + h−1VCh
−1, (3.122)

He = H0 + g(r∗)ϑ(θ), (3.123)

with:

ϑ(θ) = a2 sin θ√
∆θ

(
l2r2

e − 1
r2
e + a2

)
Γ3p+ ρemΓ0 − a sin θre

2ρ2
e

√
∆θγ̃, (3.124)

ρe = r2
e + a2 cos2 θ, γ̃ =

 σx 0
0 σx

 . (3.125)

Finally, VC and VS are defined by equations (3.61) and (3.62), their asymptotic behaviour
is described in Lemma 3.5.3.

Both H1 and He are of the prescribed form (3.75), hence the theory presented in
Section 3.5 applies to them. We will show that we can compare the full operator H ≡
Hp = hH0h+ VS + VC to simplified dynamics as so:

H −→
r∗→±∞


H1 −→

r∗→+∞
H0

H1 −→
r∗→−∞

He
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3.6.2 First comparison

The first step is to compare H to H1. Here, there is no distinction between the be-
haviour at the different horizons because:

H −H1 = (h2 − 1)H0 + h[H0, h] + VS + (h2 − 1)h−2VC

≡ (h2 − 1)
∈S2,2

H1 + VS + h[H0, h],

and VS + h[H0, h] ≡ ṼS is short-range. Proposition 3.5.7 is the key to prove:

Proposition 3.6.1. The generalised wave-operators:

Ω1
± = s – lim

t→±∞
eitH1e−itHPc(H),

Ω̃1
± = s – lim

t→ ±∞
eitHe−itH1Pc(H1),

(3.126)

exist, where, for any self-adjoint operator B, Pc(B) denotes the projection onto the abso-
lutely continuous subspace of B.

Proof. We show the existence of the first limit at t → +∞ the other cases are similar.
We begin by remarking that:

⋃
χ∈C∞

0 (R)
supp χ∩{0}=∅

χ(H)H = Pc(H)H ,

so it is sufficient to prove the existence of the limit:

s – lim
t→+∞

eitH1χ(H)e−itH ,

for every χ ∈ C∞
0 (R), suppχ ∩ {0} = ∅. Consider then such a χ and let εχ be defined

by Proposition 3.5.7. Choose j0 ∈ C∞
0 (R) such that supp j0 ⊂ (−εχ, εχ) and j ≡ 1 on a

neighbourhood of 0. Set j = 1 − j0. (3.119) implies that:

s – lim
t→∞

eitH1j0(
r∗

t
)e−itHχ(H) = 0.

It remains to prove the existence of:

s – lim
t→∞

eitH1j(r
∗

t
)χ(H)e−itH .
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For this, we apply the methods of Cook and Kato 30, who remarked that the convergence,
for every u in a dense set of H , of the integral:

∫ +∞

1

d
dt

(
eitH1j(r

∗

t
)χ(H)e−itHu

)
,

was a sufficient condition for the limit to exist. To prove the convergence of the integral,
there are two model arguments that will both be illustrated on this simple example. To
begin with, let u ∈ D(H) = D(H1) then d

dt

(
eitH1j( r∗

t
)χ(H)e−itH

)
u equates to:

eitH1

(
iH1j(

r∗

t
) − r∗

t2
j′(r

∗

t
) − j(r

∗

t
)iH

)
χ(H)e−itHu

= eitH1

(
ij(r

∗

t
)(H1 −H) + 1

t
(Γ1 − r∗

t
)j′(r

∗

t
)
)
χ(H)e−itH .

The treatment of the first term, illustrates the first type of argument. Consider first:

H1 −H = (h2 − 1)H1 + ṼS.

On supp j, one must have |r∗| ≥ εt for some ε ∈ R∗
+, thus, 1

|r∗| ≤ 1
εt

on supp j. Conse-
quently, j( r∗

t
)(h2 − 1) = O(t−2) and j( r∗

t
)ṼS = O(t−2). Because H1χ(H) is bounded 31,

the term:
eitH1j(r

∗

t
)(H1 −H)χ(H)e−itHu,

is therefore integrable.

The final term, eitH1 1
t

(
Γ1 − r∗

t

)
j′( r∗

t
)χ(H)e−itHu, that is not clearly integrable in

the sense of Lebesgue, requires a different treatment, which will serve as illustration for
the second type of argument we use. Lebesgue integrability is in fact sufficient, but not
necessary; the key to Cook’s argument is simply that for any ε and any t1, t2 sufficiently
large: ∥∥∥∥eit2H1j(r

∗

t2
)χ(H)e−it2H − eit1H1j(r

∗

t1
)χ(H)e−it1H

∥∥∥∥ < ε.

30. see for example [DG97; Lax02]
31. H1 is continuous on D(H)
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Moreover, by the Hahn-Banach theorem, there is v ∈ H , ||v|| ≤ 1 such that:

||eit2H1j(r
∗

t2
)χ(H)e−it2Hu− eit1H1j(r

∗

t1
)χ(H)e−it1Hu||

= (v, eit2H1j(r
∗

t2
)χ(H)e−it2Hu− eit1H1j(r

∗

t1
)χ(H)e−it1Hu),

=
∫ t2

t1

(
v,

d
dt

(
eitH1j(r

∗

t
)χ(H)e−itHu

))
dt.

So, one only needs to verify that for t1, t2 sufficiently large the integral:

∫ t2

t1

(
v,

d
dt

(
eitH1j(r

∗

t
)χ(H)e−itHu

))
dt,

can be made arbitrarily small. Choose now χ̃ ∈ C∞
0 (R) such that supp χ̃ ∩ {0} = ∅ and

χ̃χ = χ, j̃ ∈ C∞
0 (R), that vanishes on a neighbourhood of zero and satisfies j̃j′ = j′.

Notice then that:

1
t
(Γ1 − r∗

t
)j′(r

∗

t
)χ(H) =χ̃(H1)j̃(

r∗

t
)1
t
(Γ1 − r∗

t
)j̃(r

∗

t
)j′(r

∗

t
)χ(H)

+ 1
t
(Γ1 − r∗

t
)j̃(r

∗

t
)j′(r

∗

t
)(χ̃(H) − χ̃(H1))χ(H)

+ 1
t
[(Γ1 − r∗

t
), χ̃(H1)]j′(r

∗

t
)χ(H)

+ 1
t
(Γ1 − r∗

t
)[j′(r

∗

t
), χ̃(H1)]χ(H).

The last three terms are O(t−2) so are integrable, this is not changed by multiplying to
the left with eitH1 and to the right with e−itH . Now, for any v ∈ H , one certainly has:

|(v, eitH1
1
t
χ̃(H1)j̃(

r∗

t
)(Γ1 − r∗

t
)j̃(r

∗

t
)j′(r

∗

t
)χ(H)e−itHu)|

=
∣∣∣∣∣
(

1√
t
j̃(r

∗

t
)(Γ1 − r∗

t
)j̃(r

∗

t
)χ̃(H1)e−itH1v,

1√
t
j′(r

∗

t
)χ(H)e−itHu

)∣∣∣∣∣ ,
≤ K

∥∥∥∥∥ 1√
t
j̃(r

∗

t
)χ̃(H1)e−itH1v

∥∥∥∥∥
∥∥∥∥∥ 1√

t
j′(r

∗

t
)χ(H)e−itHu

∥∥∥∥∥ ,
for some K ∈ R∗

+. In the above we have used the fact that:

j̃(r
∗

t
)(Γ1 − r∗

t
) ∈ B(H ).
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Applying the Cauchy-Schwarz inequality, we get the following estimate:

∫ t2

t1

∣∣∣∣(v, eitH1
1
t
Γ1χ̃(H1)j̃(

r∗

t
)j′(r

∗

t
)χ(H)e−itHu)

∣∣∣∣ dt
≤ K

(∫ t2

t1

∥∥∥∥j̃(r∗

t
)χ̃(H1)e−itH1v

∥∥∥∥2 dt
t

) 1
2
(∫ t2

t1

∥∥∥∥j′(r
∗

t
)χ(H)e−itHu

∥∥∥∥2 dt
t

) 1
2

.

However, it follows from Proposition 3.5.7 that there is some constant C ∈ R∗
+ such that:

(∫ t2

t1

∥∥∥∥j̃(r∗

t
)χ̃(H1)e−itH1v

∥∥∥∥2 dt
t

) 1
2
(∫ t2

t1

∥∥∥∥j′(r
∗

t
)χ(H)e−itHu

∥∥∥∥2 dt
t

) 1
2

≤ C||v||
(∫ t2

t1

∥∥∥∥j′(r
∗

t
)χ(H)e−itHu

∥∥∥∥2 dt
t

) 1
2

,

≤ C

(∫ t2

t1

∥∥∥∥j′(r
∗

t
)χ(H)e−itHu

∥∥∥∥2 dt
t

) 1
2

.

In the last inequality we have specialised to the case where ||v|| ≤ 1. This quantity can be
made arbitrarily small, for large enough t1, t2, again by Proposition 3.5.7. The existence
of the limit then follows.

3.6.3 Second comparison

Our aim now is to show that asymptotically the dynamics ofH1 can again be simplified.
However, the comparisons we will make in this section depend on the asymptotic region
we consider. We will separate incoming and outgoing states using cut-off functions, c±,
that are assumed to satisfy: c± ∈ C∞(R), c± ≡ 1 in a neighbourhood of ±∞ and that
vanish in a neighbourhood of ∓∞. We then seek to show that the following limits exist:

Ω2
±,Hr+

= s – lim
t→±∞

eiH0tc+(r∗)e−iH1tPc(H1),

Ω̃2
±,Hr+

= s – lim
t→±∞

eiH1tc+(r∗)e−iH0t,

Ω2
±,Hre

= s – lim
t→±∞

eiHetc−(r∗)e−iH1tPc(H1),

Ω̃2
±,Hre

= s – lim
t→±∞

eiH1tc−(r∗)e−iHetPc(He).

(3.127)

This appears to introduce a certain arbitrariness into the construction, the following
lemma shows that this is not the case:
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Lemma 3.6.1. If the limits (3.127) exist, then they are independent of the choice of
cut-off functions c±.

Proof. The main point is that two such functions can differ on at most a compact set,
i.e. their difference is an element of C∞

0 (R). So let us prove that if c ∈ C∞
0 (R), then, for

instance:
s – lim
t→+∞

eiH0tc(r∗)e−iH1tPc(H1) = 0,

the other cases will be similar. As before, by density, we only need to prove that:

s – lim
t→+∞

eiH0tc(r∗)χ(H1)e−iH1t = 0,

for any χ ∈ C∞
0 (R), suppχ ∩ {0} = ∅.

Let χ be as so and let M ∈ R∗
+ be such that supp c ⊂ [−M,M ]. Choose j0 ∈ C∞

0 (R)
with support contained in (−εχ, εχ) such that, say, j0(s) = 1 for any s ∈ [− εχ

2 ,
εχ

2 ]. Then,
for any t ≥ 1, j0( r

∗

t
) = 1 for any |r∗| ≤ εχ

2 t. Hence, for t ≥ 2M
εχ

,

c(r∗) = c(r∗)j0(
r∗

t
), for any r∗ ∈ R.

It follows that:

s – lim
t→+∞

eiH0tc(r∗)χ(H1)e−iH1t = s – lim
t→+∞

eiH0tc(r∗)j0(
r∗

t
)χ(H1)e−iH1t,

which vanishes by Proposition 3.5.7.

We now argue that the limits (3.127) exist, with emphasis on:

s – lim
t→+∞

eiHetc−(r∗)e−iH1tPc(H1), (3.128)

the other cases being similar.

Lemma 3.6.2. H1 −He is short-range near the double horizon.

Proof. Note that:

h−2VC = g

(
Ξ

sin θ

(
ρ2

σ
−

√
∆θ

Ξ

)
Γ3p+ ρmΓ0 − a sin θr

2ρ2

√
∆θγ̃

)
︸ ︷︷ ︸

Θ(r,θ)

, (3.129)
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and Θ(re, θ) = ϑ(θ). Thus, Θ(r, θ) − ϑ(θ) = o
r→re

(r − re) = o
r∗→−∞

(r∗−1), which leads to:

h−2VC − gϑ(θ) = O
r∗→∞

( 1
r∗2 ).

Proof of the existence of (3.128). As before, we only need to prove the existence of:

s – lim
t→+∞

eiHetc−(r∗)χ(H1)e−iH1t,

for any χ ∈ C∞
0 (R) with suppχ ∩ {0} = ∅.

Let χ be as so, and j0, j be as in the proof of Proposition 3.6.1, then:

s – lim
t→+∞

eiHetc−(r∗)j0(
r∗

t
)χ(H1)e−iH1t = 0,

and we must prove the existence of s – lim
t→+∞

eiHetc−(r∗)j(r
∗

t
)χ(H1)e−iH1t. To simplify nota-

tions, set M(t) = eiHetc−(r∗)j( r∗

t
)χ(H1)e−iH1t, its derivative, M ′(t), is given by:

eiHet
(
iHec−(r∗)j(r

∗

t
) − r∗

t2
c−(r∗)j′(r

∗

t
) − c−(r∗)j(r

∗

t
)iH1

)
χ(H1)e−iH1t.

The term between parentheses is:

c−(r∗)j(r
∗

t
)i(He −H1) + Γ1(c−(r∗)j(r

∗

t
))′ − r∗

t2
c−(r∗)j′(r

∗

t
)

= c−(r∗)j(r
∗

t
)i(He −H1) + Γ1(c′

−(r∗)j(r
∗

t
)) + 1

t
c−(r∗)(Γ1 − r∗

t
)j′(r

∗

t
).

The only new term compared with the proof of Proposition 3.6.1 is:

Γ1(c′
−(r∗)j(r

∗

t
)),

however this vanishes when t is sufficiently large because c′ has compact support and j

vanishes on a neighbourhood of 0. Moreover, since He−H1 is short-range near the double
horizon and c− vanishes on a neighbourhood of +∞, the first two terms are O(t−2) and
hence integrable. The last term is treated as at the end of the proof of Proposition 3.6.1.
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3.6.4 The operator He

The expression of He suggests that we seek to understand the precise spectral theory
of the operator, defined on the sphere by:

De = D + ϑ(θ). (3.130)

In particular, we would like to show that there is a Hilbert space decomposition of L2(S2)⊗
C4 which enables us to decompose the full Hilbert space H into an orthogonal sum of
stable subspaces, that can be used to study He. Since ϑ(θ) is a bounded operator it is an
immediate consequence of the Kato-Rellich perturbation theorem that De has compact
resolvent. However, we require a slightly more thorough understanding of the structure
of the spectral subspaces and in particular how Γ1 acts on them.

Dimension of spectral subspaces

Decompose L2(S2) ⊗ C4 in the usual manner by diagonalising Dφ with anti-periodic
boundary conditions, and consider the restriction Dn

e of De to the subspace with eigenvalue
n ∈ Z+ 1

2 . In the following Eλ will denote the spectral subspace of λ ∈ R for this restricted
operator.

An element f in this subspace is an eigenvector with eigenvalue λ ∈ R of Dn
e if and

only if it is a solution to the first order ordinary differential equation:

√
∆θΓ2Dθf − i

2

(
∆′
θ

2
√

∆θ

+ cot θ
)

Γ2f − are sin θ
√

∆θ

2ρ2
e

γ̃f

+
(√

∆θ

sin θ n+ a2 sin θ√
∆θ

l2r2
e − 1

r2
e + a2 p

)
Γ3f + ρemΓ0f − λf = 0. (3.131)

Note that since Γ1 anti-commutes with Γ0,Γ3,Γ2 and γ̃, if f is a solution to (3.131) then
Γ1f is a solution to the analogous equation for −λ, in fact, Γ1 is an isometry between Eλ
and E−λ. The study of (3.131) is slightly easier after the substitution z = cos θ, after
which we obtain:

a1(z)Γ2Dz + a2(z)Γ2f + a3(z)Γ3f + a5(z)γ̃f + a0(z)Γ0f − λf = 0, (3.132)
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where:
a0(z) = ρem, a1(z) = −

√
∆θ

√
1 − z2,

a2(z) = − i

2

(
−a2l2

z
√

1 − z2
√

∆θ

+ z√
1 − z2

)
,

a3(z) =
( √

∆θ√
1 − z2

n+ a2√1 − z2
√

∆θ

l2r2
e − 1

r2
e + a2 p

)
,

a5(z) = −a
√

1 − z2

√
∆θ

2ρ2
e

.

(3.133)

Save the expressions
√

1 − z2, 1√
1−z2 , all other functions appearing in the coefficients (3.133)

of the equation can be extended to analytic functions on a disc centered in 0 and with ra-
dius 1+ε for some ε > 0, the reason for this is that the parameters satisfy: |al| < 2−

√
3 < 1

and re > |a|. This suggests that (3.132) extends naturally to a differential equation ex-
pressed on an open subset of the 1-dimension complex manifold S:

S = {(z, w) ∈ C2, z ∈ B(0, 1 + ε), z2 + w2 = 1},

where z is used as local coordinate - the implicit function theorem implies that this can
be done in a neighbourhood of any point in S save (1, 0), (−1, 0). The functions z, w are
globally defined and holomorphic on S and (3.132) can be rewritten:

−
√

∆θwΓ2Dzf − i

2

(
−a2l2

zw√
∆θ

+ z

w

)
Γ2f

+
(√

∆θ

w
n+ a2w√

∆θ

l2r2
e − 1

r2
e + a2 p

)
Γ3f − aw

√
∆θ

2ρ2
e

γ̃f + ρemΓ0f − λf = 0. (3.134)

By the Cauchy-Lipschitz theorem the set of solutions to Equation (3.134) on S\ {(1, 0), (−1, 0)}
is a 4-dimensional vector space. The solutions to (3.132) will be the restrictions to ]−1, 1[,
(i.e. z ∈] − 1, 1[, w > 0) of those of (3.134). Amongst these, we must pick out those in
L2] − 1, 1[. Since De has compact resolvent we already know that they exist only for a
countable number of values of λ. We will not seek the exact condition for this, but, a
simple analysis of the behaviour of the solutions near a point where w = 0 will enable us
to see that the subspace of L2] − 1, 1[ solutions is at most of dimension 2. To this end, we
switch to local coordinates defined around such a point, say, (−1, 0). In fact, again using
the Implicit Function Theorem, one can choose w as local coordinate on a neighbourhood
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of (−1, 0), the equation then becomes:

√
∆θzΓ2Dwf − i

2

(
−a2l2

zw√
∆θ

+ z

w

)
Γ2f +

(√
∆θ

w
n+ a2w√

∆θ

l2r2
e − 1

r2
e + a2 p

)
Γ3f

− aw

√
∆θ

2ρ2
e

γ̃f + ρemΓ0f − λf = 0. (3.135)

(3.135) has a singular-regular point at w = 0 32, hence, one can apply the Frobenius
method, i.e. there are solutions of the form f(w) = wα

∑
k akw

k. Plugging this anstaz
into (3.135) we find that a0 must be in the null space of the map:

M(α) = i(α + 1
2)Γ2 + nΓ3. (3.136)

The kernel is non-trivial only if α satisfies:

(α− n+ 1
2)2(α + n+ 1

2)2 = 0. (3.137)

For each solution to (3.137), the kernel of M(α) is of dimension 2, and so one can generate
two linearly independent solutions for each α 33. Only α = |n| − 1

2 can yield square
integrable solutions to (3.132), thus it follows that:

Lemma 3.6.3. In the notations of this paragraph, if n ∈ Z + 1
2 and λ ∈ σ(Dn

e ), then
dimEλ ≤ 2.

We now complete the proof of Lemma 3.4.3 ; the eigenequation S̃ψk,n = λkψk,n is
the special case of (3.132), where re = p = m = 0. In this case, the equation has
another symmetry that amounts to saying that Γ2 and Γ3 anti-commute with the matrix

P =
 0 I2

I2 0

. Hence, P , like Γ1, is an isometry of Eλ onto E−λ, however for any

u ∈ C4 \ {0}, Pu and Γ1u are linearly independent, so that we must have equality in
Lemma 3.6.3. The form of the solutions follows from the block diagonal form of the
equations.

32. see [Inc56]
33. Note that, since the roots of (3.137) differ by a positive integer, the anstaz will need to be modified

to include possible logarithmic terms in the solution when α = −|n| − 1
2
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A reduction of He

Denote now:

— σ(De) ∪ {0} = (µk)k∈Z, enumerated such that µ−k = −µk, for each k ∈ Z.

— For each k ∈ Z, J(k) the set of integers q ∈ Z such that µk is an eigenvalue for
D
q+ 1

2
e ; note that also J(k) = J(−k).

— If k ∈ Z, q ∈ J(k), Ek,q the spectral subspace of the eigenvalue µk of D
q+ 1

2
e . By

convention, if 0 ̸∈ σ(De), we set J(0) = {0} and E0,0 = {0}.

— For each k ∈ N∗ and fixed q ∈ J(k), Ẽk,q = L2(R) ⊗ (Ek,q
⊥
⊕ E−k,q).

— Ẽ0,q = L2(R) ⊗ E0,q, q ∈ J(0)

The subspaces Ẽk,q are, by construction, stable under the action of He and:

H =
⊕

k∈N,q∈J(k)
Ẽk,q.

Now, let k ∈ N∗, q ∈ J(k), if (ei)i∈J1,dimEk,qK is an orthonormal basis for Ek,q, then
(Γ1ei)i∈J1,dimEk,qK is an orthonormal basis of E−k,q and so, since Ek,q and E−k,q are orthog-
onal, one can concatenate these two bases to obtain an orthonormal basis Ek,q ⊕ E−k,q.
This enables us to identify, isometrically, Ẽk,q with [L2(R)]2 dimEk,q via the natural isomor-
phism:

((ui)i∈J1,dimEk,qK, (vi)i∈J1,dimEk,qK) 7−→
dimEk,q∑
i=1

(ui + viΓ1)ei.

Through this isomorphism, the restriction, Hq,n
e of He to Ẽk,q corresponds to the following

operator:
ΓD∗

r + µkg(r∗)Γ̃ + f(r∗),

where Γ =
 0 IdimEk,q

IdimEk,q
0

 , Γ̃ =
 IdimEk,q

0
0 −IdimEk,q

 and satisfy the impor-

tant property that {Γ, Γ̃} = 0. It is easily seen to be unitarily equivalent to:

Γ1D∗
r − µkg(r∗)Γ2 + f(r∗) if dimEk,q = 2,

−σzD∗
r + µkg(r∗)σx + f(r∗) if dimEk,q = 1.

(3.138)

If 0 ∈ σ(De) then, dimE0,q ∈ {1, 2}, for any q ∈ J(0) and through the natural identi-
fication described above is of the form ΓDr∗ + f(r∗) where Γ here is just some unitary
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matrix. This is in all points analogous to (3.53), and we will now be able to complete the
scattering theory in a unified fashion. It also follows that He has no eigenvalues by the
same Grönwall lemma argument that was used for H0 in Section 3.5.10. In short we have:

Lemma 3.6.4. σ(He) = σac(He), consequently, Pc(He) = Id.

3.6.5 The spherically symmetric operators

The final step required in order to obtain the full scattering theory is to compare
He and H0 to their natural asymptotic profiles, Γ1Dr∗ + c± at r∗ → ±∞ respectively;
c+ = ap

r2
++a2 − ap

r2
e+a2 and c− = 0.

In the previous paragraph, we established that the Hilbert space H could be decom-
posed into an orthogonal sum of stable subspaces on which He reduces to a spherically
symmetric operator ; this was also shown to be the case of H0 in Section 3.4.3. Con-
sequently, in order to construct wave operators, we only need to work on one of these
subspaces. Additionally, the similarities between the reduced forms of He and H0 imply
that we, in fact, only need to know how to construct the wave operators for 34:

h = Γ1Dr∗ − µg(r∗)Γ2 + f(r∗), (3.139)

on [L2(R)]4, and under the assumption that we have minimal/maximal velocity estimates.
This is manifestly the case for our operators because the estimates are stable under
restriction to a stable subspace.

The important point is that the operator h in (3.139) is formally similar to the restric-
tion to a spherical harmonic of the (charged) Dirac operator of the Reissner-Nordström
black hole given in [Dau10, Equation 3.6]. The extreme black hole horizon (r∗ → ∞)
can be assimilated with spacelike infinity and the symbols f , g have the same asymptotic
behaviour at both infinities as the corresponding ones in [Dau10, Equation 3.6]. It follows
that we can apply the results of [Dau10] to our case. We note that, in fact, our operator is
simpler than the one studied in [Dau04; Dau10] since there are no surviving mass terms.

Precisely, using [Dau10, Propositions 5.6 and 5.7] we find that:

Proposition 3.6.2 (Microlocal velocity estimate). Let χ ∈ C∞
0 (R) be such that suppχ∩

{0} = ∅ and choose 0 < θ1 < θ2, then there is a constant C > 0 such that for any

34. We choose to discuss the case where dim Ek,q = 2, but the reasoning is independent of this choice.
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u ∈ [L2(R)]4: ∫ +∞

1

∥∥∥∥∥1[θ1,θ2](
|r∗|
t

)(Γ1 − r∗

t
)χ(h)e−ithu

∥∥∥∥∥
2
dt

t
≤ C||u||2. (3.140)

Furthermore:
s – lim
t→+∞

1[θ1,θ2](
|r∗|
t

)(Γ1 − r∗

t
)χ(h)e−ith = 0. (3.141)

Analogous results can be established at t → −∞, but one must replace Γ1 with −Γ1.

For the specific treatment of our operators, due to the lack of mass terms, it is possible
to simplify the proofs in [Dau10], avoiding in particular the use of pseudo-differential
operators. We shall proceed to show this.

The proof of Proposition 3.6.2 will be split into two cases. First, we will restrict to the
part of the field that is escaping towards the simple horizon, this part of the proof is in
all point analogous to Daudé’s:

Proof of Proposition 3.6.2, first case . Instead of (3.140), let us seek to estimate:

∫ +∞

1

∥∥∥∥F (r
∗

t
)(Γ1 − r∗

t
)χ(h)e−ithu

∥∥∥∥2 dt

t
≤ C||u||2, (3.142)

where F ∈ C∞
0 (R), F ≡ 1 on a neighbourhood of [θ1, θ2] and χ, θ1, θ2 satisfy the hypotheses

of Proposition 3.6.2; the conditions on F restrict to the region r∗ > 0. It is enough to
assume that [θ1, θ2] is a neighbourhood of [εχ, 1], for this covers the region where we lack
information. Now define for each t ≥ 1:

ϕ(t) = χ(h)F (r
∗

t
)
(
R(r

∗

t
) + (Γ1 − r∗

t
)R′(r

∗

t
)
)
F (r

∗

t
)χ(h).

R ∈ C∞
0 (R) is assumed to satisfy R′ ≡ 0 on a neighbourhood of 0 and R(r∗) = r∗2

2 on
suppF . ϕ is uniformly bounded in t and:

ϕ′(t) = − 1
t
χ(h)r

∗

t
F ′(r

∗

t
)
(
R(r

∗

t
) + (Γ1 − r∗

t
)R′(r

∗

t
)
)
F (r

∗

t
)χ(h)

− 1
t
χ(h)F (r

∗

t
)
(
R(r

∗

t
) + (Γ1 − r∗

t
)R′(r

∗

t
)
)
r∗

t
F ′(r

∗

t
)χ(h)

− 1
t
χ(h)F (r

∗

t
)
(

(Γ1 − r∗

t
)r

∗

t
R′′(r

∗

t
)
)
F (r

∗

t
)χ(h).

(3.143)
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Moreover:

i[h, ϕ(t)] =χ(h)
(
F (r

∗

t
)(−iµ)g(r∗)[Γ2,Γ1]R′(r

∗

t
)F (r

∗

t
)
)
χ(h)

+ 1
t
χ(h)Γ1F ′(r

∗

t
)
(
R(r

∗

t
) + (Γ1 − r∗

t
)R′(r

∗

t
)
)
F (r

∗

t
)χ(h)

+ 1
t
χ(h)F (r

∗

t
)
(
R(r

∗

t
) + (Γ1 − r∗

t
)R′(r

∗

t
)
)

Γ1F ′(r
∗

t
)χ(h)

+ 1
t
χ(h)F (r

∗

t
)Γ1(Γ1 − r∗

t
)R′′(r

∗

t
)F (r

∗

t
)χ(h).

(3.144)

So the Heisenberg derivative of ϕ is :

Dhϕ(t) =1
t
χ(h)(Γ1 − r∗

t
)F ′(r

∗

t
)
(
R(r

∗

t
) + (Γ1 − r∗

t
)R′(r

∗

t
)
)
F (r

∗

t
)χ(h)

+ 1
t
χ(h)F (r

∗

t
)
(
R(r

∗

t
) + (Γ1 − r∗

t
)R′(r

∗

t
)
)
F ′(r

∗

t
)(Γ1 − r∗

t
)χ(h)

+ χ(h)F (r
∗

t
)(−iµg(r∗))[Γ2,Γ1]R′(r

∗

t
)F (r

∗

t
)χ(h)

+ 1
t
χ(h)F (r

∗

t
)(Γ1 − r∗

t
)R′′(r

∗

t
)(Γ1 − r∗

t
)F (r

∗

t
)χ(h)

(3.145)

Consider the first term, and let F̃ ∈ C∞
0 (R) be such that supp F̃ ⊂] − ∞, θ1[ ∪ [θ2,+∞[

and F̃F ′ = F ′ on suppF ′. It can now be written: 1
t
χ(h)F̃ ( r∗

t
)B(t)F̃ ( r∗

t
)χ(h), where B(t)

is uniformly bounded, so, there is a constant M > 0 such that:

1
t
χ(h)(Γ1 − r∗

t
)F ′(r

∗

t
)
(
R(r

∗

t
) + (Γ1 − r∗

t
)R′(r

∗

t
)
)
F (r

∗

t
)χ(h)

≥ −M

t
χ(h)F̃ 2(r

∗

t
)χ(h).

Moreover, according to the minimal and maximal velocity estimates, there is C > 0 such
that for any u ∈ [L2(R)]4:

∫ +∞

1

∥∥∥∥F̃ (r
∗

t
)χ(h)e−ihtu

∥∥∥∥2 dt
t

≤ C||u||2.

The same reasoning applies for the second term. The third term is treated in the following
manner: g ∈ S1,1, which means in particular that: g(r∗) = O

r∗→+∞
(r∗−2), thus:

χ(h)F (r
∗

t
)µg(r∗)i[Γ1,Γ2]R′(r

∗

t
)F (r

∗

t
)χ(h) ≥ −M1

t2
χ(h)F (r

∗

t
)2χ(h),
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for some M1 > 0, and one certainly has:

∫ +∞

1

∥∥∥∥F (r
∗

t
)χ(h)e−ihtu

∥∥∥∥2 dt
t2

≤ C1||u||2,

for any u ∈ [L2(R)]4 and some constant C1 > 0. The desired estimate follows because
R′′ = 1 on supp F and ϕ is uniformly bounded, we refer to [DG97, Lemma B.4.1] for the
details.

The argument used to treat the third term in (3.145) will not go through at the double
horizon, simply because the potential g(r∗)Γ2 is of Coulomb type. This was, of course,
already the case at spacelike infinity in the Reissner-Nordström case. The origin of this
troublesome term is simply the matrix-valued coefficients of our operator and the simple
fact that [Γ1,Γ2] is non-zero. However, rather large spectral subspaces of h0 sit in one of the
spectral spaces of Γ1 and, restricted to these subspaces, the commutator is zero. This will
turn out to be sufficient to conclude, since the Coulomb decay is enough for the Helffer-
Sjöstrand formula to enable a control of operators of the form F ( r∗

t
)(χ(h0) − χ(h)). This

rough idea is made very precise thanks to the notion of locally scalar operators introduced
in [GM01]. The definition is as follows:

Definition 3.6.1. Let E be a finite-dimensional complex Hilbert space and l : R → B(E)
a continuous function such that l(p) is symmetric for any p ∈ R. Define the operator
L0 = l(Dx) on L2(R) ⊗ E, then, L0 is said to be scalar on an open subset I ⊂ R if there
is a Borel function µ : R → R such that:

L01I(L0) = µ(Dx)1I(L0). (3.146)

If λ ∈ R, L0 is said to be scalar at λ, if the above holds on some open neighbourhood of
λ. Finally, L0 is locally scalar on an open set I if and only if it is scalar at every point in
I.

The authors of [GM01] had Dirac operators in mind as the main application of their
theory and so it is no surprise that our 1-dimensional Dirac operators Γ1Dr∗ + c± satisfy
the hypothesis of the definition. We will nevertheless work out the details and show that
they are locally scalar on R\{c±}; as it is a good illustration of the terms in the definition.
The most direct 35 way to do this is to use the Fourier transform and work with the matrix-

35. and informative
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valued multiplication operators Γ1p + c±. For each p this is a diagonal hermitian matrix
that has only two eigenvalues |p| + c± and −|p| + c±.

Let λ ∈ R \ {c±} and let I ⊂ R \ {c±} be any open interval containing λ, then, since
I is connected, I∩]c±,+∞[= ∅ or I∩] − ∞, c±[= ∅. Suppose the latter, then 1I(Γ1p+ c±)
acts on u ∈ L2(R) ⊗E by projecting u(p) onto the eigenspace of the eigenvalue |p| + c± of
the matrix Γ1p+c± for each p. Therefore, (Γ1p+c±)1I(Γ1p+c±) = (|p|+c±)1I(Γ1p+c±),
which, after returning to the original representation, equates to:

(Γ1Dr∗ + c±)1I(Γ1Dr∗ + c±) = (|Dr∗| + c±)1I(Γ1Dr∗ + c±).

This does not hold on any neighbourhood of c± for there would always be two distinct
eigenvalues.

Now, let L0 be scalar on some interval I and define:

ΩI = {p ∈ R, σ(l(p)) ∩ I ̸= ∅}, (3.147)

where, σ(l(p)) denotes the spectrum of the operator l(p). Then, in fact, the function
µ in (3.146) can be chosen arbitrarily on R \ ΩI ; this is clear in the Fourier transform
representation: 1I(l(p)) acts on u ∈ L2(R) ⊗ E according to:

(1I(l(p))u)(p) =
∑

λ∈σ(l(p))
1I(λ)Pλ(l(p))u(p), p ∈ R,

where Pλ denotes projection onto the λ-eigenspace of the matrix l(p). Consequently, if
p ∈ R \ ΩI then (1(l(p))u)(p) = 0.

To see how to exploit this remark, let us study ΩI in the specific case of our Dirac
type operators; where we have already seen that µ(p) = |p| + c±. To determine ΩI choose
λ ∈]c±,+∞[ and ε > 0 such that I =]λ− ε, λ+ ε[⊂ ]c±,+∞[, then :

Ω(I) = {p ∈ R, ||p| − (λ− c±)| < ε}.

This is the union of two disjoint subsets on each side of 0, one can therefore assume that
outside of ΩI , µ(p) is extended to a function µ ∈ C∞

0 (R) and in this case we will also
have:

Γ11I(Γ1Dr∗ + c±) = µ′(Dx)1I(Γ1Dr∗ + c±)

Again µ′ can be replaced with ν(p) = p
|p|ζ(p) where ζ ∈ C∞(R), ζ(p) = 1 outside a small
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neighbourhood of 0 and ζ(p) = 0 on a neighbourhood of 0. On this subspace, the operator
is reduced to a pseudo-differential operator with symbol ν(p).

We now have the tools necessary to complete the proof at the double horizon, although,
we will not need to exploit the above remark to its full extent, contrary to [Dau10], since
the mass terms do not survive at the double horizon. We therefore propose a simpler
proof, slightly different in spirit, in which the aim is to pinpoint exactly at which moment
the locally scalar properties of the operator intervene.

Let θ1, θ2 and χ be as before, and, this time choose, F ∈ C∞
0 (R) identically equal to 1

on [−θ2,−θ1], to single out the double horizon. Without loss of generality, we can assume
that suppχ is a closed interval of R. Choose now, a connected open neighbourhood I of
suppχ disjoint from 0, and suppose, say, that I ⊂]0,+∞[ (the other case is identical),
then h0 = Γ1Dr∗ is scalar on I. Finally, let χ̃ ∈ C∞

0 (R) such that suppχ ⊂ supp χ̃ ⊂ I

and χ̃ = 1 on a neighbourhood of suppχ.

Proof of Proposition 3.6.2, second case . Now, the proof begins exactly as before, but we
treat the term with g(r∗) more carefully, recall its expression:

χ(h)F (r
∗

t
)µg(r∗)i[Γ1,Γ2]R′(r

∗

t
)F (r

∗

t
)χ(h) = −2iχ(h)F (r

∗

t
)µg(r∗)R′(r

∗

t
)F (r

∗

t
)Γ2Γ1χ(h).

It is straightforward to see that:

χ(h)F (r
∗

t
)µg(r∗)R′(r

∗

t
)F (r

∗

t
)Γ2Γ1χ(h) = χ(h)F (r

∗

t
)µg(r∗)R′(r

∗

t
)F (r

∗

t
)Γ2Γ1χ̃(h0)χ(h)

+ χ(h)F (r
∗

t
)µg(r∗)R′(r

∗

t
)F (r

∗

t
)Γ2Γ1(χ̃(h) − χ̃(h0))χ(h).

The second term isO(t−2) becauseR′( r∗

t
) = r∗

t
on suppF , r∗g(r∗) = O(1) and F ( r∗

t
)(χ̃(h)−

χ̃(h0)) is O(t−1). The first term can be decomposed further as follows:

χ(h)F (r
∗

t
)µg(r∗)R′(r

∗

t
)F (r

∗

t
)Γ2Γ1χ̃(h0)χ(h) =

χ(h)[χ̃(h), F (r
∗

t
)µg(r∗)R′(r

∗

t
)F (r

∗

t
)]Γ2Γ1χ̃(h0)χ(h)

+ χ(h)F (r
∗

t
)µg(r∗)R′(r

∗

t
)F (r

∗

t
)(χ̃(h) − χ̃(h0))Γ2Γ1χ̃(h0)χ(h)

+ χ(h)F (r
∗

t
)µg(r∗)R′(r

∗

t
)F (r

∗

t
)χ̃(h0)Γ2Γ1χ̃(h0)χ(h) (3.148)

The first and second terms are O(t−2) using the Helffer-Sjöstrand Formula, the last term,
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on the other hand vanishes. To see this, let us study:

χ̃(h0)Γ2Γ1χ̃(h0) = χ̃(h0)1I(h0)Γ2Γ11I(h0)χ̃(h0).

Via Fourier transform, 1I(h0)Γ2Γ11I(h0) is unitarily equivalent to the matrix-valued mul-
tiplication operator: 1I(Γ1p)Γ2Γ11I(Γ1p), however, for p ∈ ΩI :

1I(Γ1p)Γ2 p

|p|
1I(Γ1p) = 1I(Γ1p)Γ2Γ11I(Γ1p),

= −1I(Γ1p)Γ1Γ21I(Γ1p) = −1I(Γ1p)Γ2 p

|p|
1I(Γ1p).

Hence, all terms in the above equality vanish; Proposition 3.6.2 follows.

The first consequence of (3.140) is:

Lemma 3.6.5. Let χ ∈ C∞
0 (R), such that 0 ̸∈ suppχ, and let 0 < θ1 < θ2, then

s – lim
t→+∞

1[θ1,θ2](
|r∗|
t

)(Γ1 − r∗

t
)χ(h)e−ith = 0. (3.149)

Proof. As before, assume that θ1 < εχ et θ2 > 1. It is a direct consequence of the
estimate (3.140) that, if the limit exist, it should be 0. Let F ∈ C∞

0 (R) such that suppF ⊂
[−θ2,−θ1] ∪ [θ1, θ2], let us show that for any u ∈ D(h) the following limit exists:

lim
t→+∞

||F (r
∗

t
)(Γ1 − r∗

t
)χ(h)e−ithu||2.

The desired result follows immediately as this limit is necessarily 0. We only need to show
that the Cauchy criterion is satisfied by the above by studying the integral :

∫ t2

t1
(u, d

dte
ithχ(h)F (r

∗

t
)2(Γ1 − r∗

t
)2χ(h)e−ithu)dt, u ∈ D(h).

The derivative evaluates to:

(u, χ(h)eith1
t
F ′(r

∗

t
)(Γ1 − r∗

t
)3F (r

∗

t
)χ(h)e−ithu)

+(u, χ(h)eith1
t
F (r

∗

t
)(Γ1 − r∗

t
)3F ′(r

∗

t
)χ(h)e−ithu)

−(u, 2
t
eithχ(h)F (r

∗

t
)(Γ1 − r∗

t
)2F (r

∗

t
)χ(h)e−ithu)

+(u, 2eithχ(h)F (r
∗

t
)µg(r∗)r

∗

t
i[Γ2,Γ1]F (r

∗

t
)e−ithu).

(3.150)
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In order to show that the integral is arbitrarily small as long as t1, t2 are large enough, the
first three terms are treated as at the end of the proof of Proposition 3.6.1, more precisely,
one exploits the different velocity estimates according to the supports of F and F ′; the
last term is dealt with as in the second part of the proof of Proposition 3.6.2, one again
uses the locally scalar properties to reveal that it is in fact O(t−2) and hence integrable
on [1,+∞].

Proposition 3.6.2 is known as a microlocal velocity estimate. It completes the asymp-
totic information about the operator r∗

t
– which is itself to be thought of as an approximate

velocity operator – provided by minimal and maximal velocity estimates. For instance,
combining the three, we show that:

Corollary 3.6.1. For any J ∈ C∞(R):

s – lim
t→+∞

eith(J(r
∗

t
) − J(Γ1))e−ith = 0, (3.151)

Proof. First, by density, it is sufficient to consider J ∈ C∞
0 (R). For such J , the Helffer-

Sjöstrand formula can be used to show that the following holds for any j0 ∈ C∞
0 (R):

(J(r
∗

t
) − J(Γ1))j0(

r∗

t
) = i

2π

∫
∂z̄J̃(z)(Γ1 − z)−1

(
r∗

t
− z

)−1
(Γ1 − r∗

t
)j0(

r∗

t
)dz ∧ dz̄

= B(t)(Γ1 − r∗

t
)j0(

r∗

t
).

The B(t) are uniformly bounded in t. By a further density argument we only need to
prove that for any χ ∈ C∞

0 (R), 0 ̸∈ suppχ:

s – lim
t→+∞

eith(J(r
∗

t
) − J(Γ1))χ(h)e−ith = 0.

Fix χ and introduce a smooth partition of unity, j1, j2, j3 subordinate to the open cover:

U1 = {|x| < εχ − δ

2}, U2 = {|x| > 1 + δ

2}, U3 = { εχ − δ < |x| < 1 + δ},

where εχ is given by Proposition 3.5.7 and δ ∈ (0, 2εχ). Then:

eith(J(r
∗

t
) − J(Γ1))χ(h)e−ith =

∑
i

eithB(t)(Γ1 − r∗

t
)ji(

r∗

t
)χ(h)e−ith

The result now follows from the minimal, maximal and microlocal velocity estimates.
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3.6.6 Asymptotic velocity operators and wave operators for the
spherically symmetric operators

The first application of the results in the previous section is the proof of the existence
of asymptotic velocity operators; they are usually defined by:

J(P±) = s – lim
t→±∞

eithJ(r
∗

t
)e−ith, J ∈ C∞(R). (3.152)

Provided that these limits exist, one can show 36 that there is a unique operator, P±,
possibly non-densely defined, satisfying the above, we write:

P± = s –C∞ – lim
t→±∞

eith(r
∗

t
)e−ith.

We prove the following lemma:

Lemma 3.6.6. The following limits exist:

s – lim
t→±∞

eithΓ1e−ith.

Proof. As usual, we will only discuss the t → +∞ case. By density, one only needs to
prove the existence of:

s – lim
t→±∞

eithχ(h)Γ1χ(h)eith,

for any χ ∈ C∞
0 (R) such that {0} ̸∈ supp χ. Furthermore, as in the proof of Proposi-

tion 3.6.1, Proposition 3.5.7 implies that it is sufficient to prove the existence of:

s – lim
t→±∞

eithχ(h)j(r
∗

t
)Γ1χ(h)eith,

where j ∈ C∞(R) is a bounded function that vanishes on a neighbourhood of 0 and such
that supp j′ ⊂ (−εχ, εχ) with εχ given by Proposition 3.5.7. We apply Cook’s method and
calculate the derivative on D(h), one finds:

eithχ(h)
(1
t
Γ1(Γ1 − r∗

t
)j′(r

∗

t
) + i[Γ2,Γ1]g(r∗)j(r

∗

t
)
)
χ(h)e−ith.

The first term can be treated again as in the proof of Proposition 3.6.1, the second requires
a bit more effort, but the method is essentially that of Proposition 3.6.2. First, without

36. see for example the appendices in [DG97].
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loss of generality assume that suppχ is a closed interval contained in, say (0,+∞), and
let χ̃ ∈ C∞

0 (R) satisfy suppχ ⊂ supp χ̃ ⊂ (0,+∞), χχ̃ = χ. Introduce equally a partition
of unity j0, j1 such that j1(s) = 1 for s > 2 and vanishes for s < 1. Then:

i[Γ2,Γ1]g(r∗)j(r
∗

t
) = i[Γ2,Γ1]g(r∗)j0(

r∗

t
)j(r

∗

t
) + i[Γ2,Γ1]g(r∗)j1(

r∗

t
)j(r

∗

t
).

g(r∗)j1( r
∗

t
)j( r∗

t
) = O(t−2) so the second term is integrable.

Now:

χ(h)2iΓ2Γ1g(r∗)j0(
r∗

t
)j(r

∗

t
)χ(h) = χ(h)χ̃(h0)2iΓ2Γ1g(r∗)j0(

r∗

t
)j(r

∗

t
)χ(h)

+χ(h)(χ̃(h) − χ̃(h0))j0(
r∗

t
)j(r

∗

t
)2iΓ2Γ1g(r∗)χ(h),

Again, the second term is O(t−2) and the first has to be further decomposed:

χ(h)χ̃(h0)Γ2Γ1g(r∗)j0(
r∗

t
)j(r

∗

t
)χ(h) =χ(h)χ̃(h0)Γ2Γ1g(r∗)j0(

r∗

t
)j(r

∗

t
)χ̃(h)χ(h),

=χ(h)χ̃(h0)Γ2Γ1[g(r∗)j0(
r∗

t
)j(r

∗

t
), χ̃(h)]χ(h)

+ χ(h)χ̃(h0)Γ2Γ1(χ̃(h) − χ̃(h0))g(r∗)j0(
r∗

t
)j(r

∗

t
)χ(h)

+ χ(h)χ̃(h0)Γ2Γ1χ̃(h0)g(r∗)j0(
r∗

t
)j(r

∗

t
)χ(h).

The last term vanishes, and one can use the Helffer-Sjöstrand formula to show that the
others are O(t−2).

Corollary 3.6.1 can now be used to show the existence of asymptotic velocity operators
which are defined as the limits 37:

P± = s –C∞ – lim
t→±∞

eith
r∗

t
e−ith.

In Lemma 3.6.6, we showed the existence of: s – lim
t→±∞

eith(±Γ1)e−ith, consequently:

P± = s – lim
t→±∞

eith(±Γ1)e−ith,

σ(P±) = {−1, 1}.
(3.153)

37. See the appendices of [DG97]
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3.6.7 Modified wave operators in the spherically symmetric case

The final stage of the construction is to prove the existence of the (modified) operators
in the spherically symmetric case. Here, the operators P± can be used to distinguish
between the incoming and outgoing states instead of cut-off functions. The simplicity of
their spectrum means in particular that:

H = Hin ⊕ Hout,

where: Hin = 1{−1}(P±), Hout = 1{1}(P±).

At the simple horizon, the asymptotic dynamics is given by h1 = Γ1Dr∗+
(

a
r2

++a2 − a
r2

e+a2

)
p.

The difference between this and the operator h is short range when r∗ → +∞. Hence,
the existence of the wave operators on Hout can be shown in exactly the same manner as
that of (3.128).

At the double horizon, it is necessary to modify slightly the comparison dynamics in
order to take into account the long range potentials, as in [Dau10], we choose to use the
Dollard [DV66] modification; in particular, the existence of the modified wave operator is
contained in the results presented in [Dau10, Sections VII.B (Theorem 7.2), VII.C].

We briefly recall the main idea of the Dollard modification. We seek to compare h =
Γ1Dr∗ − µg(r∗)Γ2 + f(r∗) to h0 = Γ1Dr∗ on Hin. Several remarks are in order: both the
potentials are long-range near the double horizon and {Γ2, h0} = 0. This anti-commutation
property means that the corresponding term can be thought of as an “artifical” long-
range term; it is no obstruction to the existence of wave operators. This is perhaps best
understood by looking at h2:

h2 = D2
r∗ + µ2g(r∗)2 + f(r∗)2 + Γ1{Dr∗ , f(r∗)} − 2µf(r∗)g(r∗)Γ2

− µ {Γ1,Γ2}︸ ︷︷ ︸
=0

g(r∗)Dr∗ + iµg′(r∗)Γ1Γ2.

We observe that there are no surviving long-range times containing g.

The main idea of the Dollard modification can be explained as follows: if the potential
f(r∗) commuted with h0, one could expect on a purely formal level that:

eihte−if(r∗)te−ih0t = ei(h0−µg(r∗)Γ2)te+if(r∗)te−if(r∗)te−ih0t

= ei(h0−µg(r∗)Γ2)te−ih0t.

164



3.6. Intermediate wave operators

Hence, modifying the asymptotic dynamics with eitf(r∗) would enable us to construct a
wave operator. Now, of course f does not commute with h0, but, Proposition 3.6.2 and
Corollary 3.6.1 suggest that, in some sense, r∗ ≈ Γ1t when t → +∞, therefore it could
be a good idea to attempt to approximate f(r∗) with f(Γ1t), which does commute with
h0! We are therefore lead to try the above reasoning with the dynamics U(t, t0) generated
by f(tΓ1). In fact, the comparison only interests us for r∗ < 0, so we will consider the
dynamics generated by f̃(tΓ1) = j(tΓ1)f(tΓ1) where j ∈ C∞(R) is a smooth cut-off
function satisfying j(s) = 0 if s > 1 and j(s) = 1 if s < 1

2 . Since t 7→ f̃(tΓ1) = V (t) is
uniformly bounded in t, U(t, t0) of this time-dependent operator is given by the Dyson
series, or, time-ordered exponential:

U(t, t0) =
+∞∑
n=0

(−i)n
n!

∫
[t0,t]n

T (V (t1)V (t2) . . . V (tn))dtn . . . dt1

= T exp
(

(−i)
∫ t

t0
V (s)ds

)
.

In the above, the operator T denotes time ordering of the operators which is defined as:

T (V (t1) . . . V (tn)) =
∑
σ∈Sn

1(tσ(1) > tσ(2) > · · · > tσ(n))V (tσ(1)) . . . V (tσ(n)).

The uniform-boundedness of the operators V (t) implies that this expansion converges in
norm. We quote its main properties, let (t, s, t0) ∈ R3:

d
dtU(t, t0) = −iV (t)U(t, t0), U(t, t) = Id,

d
dsU(t, s) = iU(t, s)V (s), U(t, t0) = U(t, s)U(s, t0).

Set U(t) = U(t, 0), then according to [Dau10, Section 7.2]:

Proposition 3.6.3. The following limits exist:

s – lim
t→±∞

eithe−ith11{1}(±Γ1),

s – lim
t→±∞

eith1e−ith1{1}(P±),

s – lim
t→±∞

eithU(t)e−ith01{−1}(±Γ1),

s – lim
t→±∞

eith0U(t)∗eith1{−1}(P±).

(3.154)
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Once more, we note that the proof in [Dau10, Section 7.2] is complicated by the presence
of a mass term absent from our operators. To illustrate this we shall prove the existence
of:

s− lim
t→ +∞

eithU(t)e−ith01{−1}(Γ1). (3.155)

Proof of the existence of (3.155). The asymptotic velocity operator is simply Γ1 for h0

which is the reason why we use it to split incoming and outgoing states for h0. The
first step is to replace the projection with an operator that is more convenient to work
with. First of all, for any J ∈ C∞

0 (R) such that, supp J ⊂ (−∞, 0) and J(−1) = 1,
J(Γ1) = 1{−1}(Γ1). Furthermore for each t, one has:

eithU(t)J(r
∗

t
)e−ith0 = eithU(t)e−ith0(eith0J(r

∗

t
)e−ith0 − J(Γ1))

+ eithU(t)e−ith0J(Γ1).
(3.156)

Now, eithU(t)e−ith0 is uniformly bounded in t so applying 38 Corollary 3.6.1 to h0, we find
that the strong limit of the first term exists and is 0, so, using another classical density
argument we only need to prove the existence of:

s− lim
t→+∞

eithU(t)J(r
∗

t
)e−ith0χ(h0),

for any χ ∈ C∞
0 (R), 0 ̸∈ suppχ, this in particular implies that χ ≡ 0 on a neighbourhood

of 0. Once more, we use Cook’s method and to that end we calculate the derivative; one
finds:

eith
(
iJ(r

∗

t
)(−µ)g(r∗)Γ2 + 1

t
J ′(r

∗

t
)(Γ1 − r∗

t
)
)
χ(h0)U(t)e−ith0

+eith
(
iJ(r

∗

t
)f(r∗) − iJ(r

∗

t
)f̃(tΓ1)

)
χ(h0)U(t)e−ith0 .

The term involving J ′ can be treated by the second method explained in the proof of
Proposition 3.6.1; we will not repeat the reasoning here.

Let us examine the first term:

T1 = eith(iJ(r
∗

t
)(−µ)g(r∗)Γ2e−ith0U(t)χ(h0),

where we have used the fact that Γ1 commutes with h0, hence U(t) commutes with

38. although it is simpler for h0
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χ(h0) and e−ith0 . Since Γ2 anti-commutes with Γ1, Γ2U(t) = Ũ(t)Γ2, where 39 Ũ(t) =
T exp(if̃(−Γ1t)), so one can rewrite T1 as follows:

T1 = eithiJ(r
∗

t
)(−µ)g(r∗)Ũ(t)e−ith0eith0Γ2e−ith0χ(h0).

Set E(t) =
∫ t

0 e
ish0Γ2e−ish0χ(h0)ds. Γ2 anti-commutes with h0, therefore:

E(t) = Γ2
∫ t

0
e−2ish0χ(h0)ds.

However, it follows from the bounded functional calculus that:
∥∥∥∥∫ t

0
e−2ish0χ(h0)ds

∥∥∥∥ = sup
λ∈R

∣∣∣∣∫ t

0
e−2isλχ(λ)ds

∣∣∣∣ .
Since χ ≡ 0 on a neighbourhood of 0, this is finite and bounded independently of t, so
E(t) is a uniformly bounded function of t. Now, for any t1, t2 ≥ 1,

∫ t2

t1
T1(t)dt =

[
eithiJ(r

∗

t
)(−µ)g(r∗)Ũ(t)e−ith0E(t)

]t2
t1

−
∫ t2

t1
∂t

(
eith(iJ(r

∗

t
)(−µ)g(r∗)Ũ(t)e−ith0

)
E(t)dt (3.157)

Since J vanishes on a neighbourhood of 0, and E(t) is uniformly bounded, the term in
the squared brackets vanishes as t1, t2 → +∞:

∥∥∥∥eithiJ(r
∗

t
)(−µ)g(r∗)Ũ(t)e−ith0E(t)

∥∥∥∥ = O
(

|g(r∗)|J(r
∗

t
)
)

= O
(1
t

)
.

(3.158)

Additionally, due to the further derivative, the integrand in the second term is O(t−2) and
hence integrable. It remains to treat the final terms:

T2 = eith
(
iJ(r

∗

t
)f(r∗) − iJ(r

∗

t
)f̃(tΓ1)

)
χ(h0)U(t)e−ith0 .

39. The operators under consideration here are all bounded, the series defining U(t) converges in norm
and f̃ is continuous and bounded, so one only needs to check the anti-commutation property on polyno-
mials.
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Notice first that, supp J ⊂ (0,−∞), so J( r∗

t
) = J( r∗

t
)j(r∗) and:

T2 = eithiJ(r
∗

t
)
(
f̃(r∗) − f̃(tΓ1)

)
χ(h0)U(t)e−ith0 .

It follows from (3.43) and the subsequent remarks that f̃ ∈ S1,1, and one can use the
Helffer-Sjöstrand formula to obtain an expression for (f̃(r∗)− f̃(tΓ1))J( r∗

t
) as in the proof

of Lemma 3.6.1:
(f̃(r∗) − f̃(tΓ1))J(r

∗

t
) = B(t)(Γ1 − r∗

t
)J(r

∗

t
),

where B is a uniformly bounded operator in t. The desired integrability result is hence a
consequence of the microlocal velocity estimate (3.140); the existence of (3.155) follows.

3.7 The full scattering theory

In the previous two sections, the original scattering problem was progressively reduced
to a one-dimensional problem via two intermediate comparisons. We discussed the proof
of the existence of a number of strong limits that are to be identified with intermediate
waves operators. In this section, we assemble these results into the scattering theory we
set out to construct; the whole construction was broken up into three comparisons as
illustrated in Figure 3.1.

H H1

He Asymptotic profiles

H0 Asymptotic profiles

Figure 3.1 – Successive comparisons

3.7.1 Comparison I

The difference between H1 and H being a short-range potential at both infinities, there
was no obstruction to the existence of the classical wave operators (Proposition 3.6.1):

Ω1
± = s – lim

t→±∞
eitH1e−itHPc(H),

Ω̃1
± = s – lim

t→±∞
eitHe−itH1Pc(H1).

(3.159)
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The properties of these operators are well known 40, they satisfy:

Ω̃1
± = Ω1

±
∗
, Ω1

±H = H1Ω1
±

Intertwining relation
,

Ω1
±

∗Ω1
± = Pc(H), Ω1

±Ω1
±

∗ = Pc(H1),
(3.160)

as such they are isometries between the absolutely continuous subspaces of H and H1;
the intertwining relation shows that H and H1 are unitarily equivalent.

3.7.2 Comparison II

The second comparison was established in Section 3.6.3 and required to distinguish
between states scattering to the double horizon Hre and those scattering to the simple
horizon Hr+ . This distinction was accomplished using smooth cut-off functions c±, van-
ishing on a neighbourhood of ∓∞ and equal to 1 on a neighbourhood of ±∞; we will
denote by C± the subset of smooth functions with these properties. We have shown the
existence of the limits, for c± ∈ C±:

Ω2
±,Hr+

= s – lim
t→±∞

eiH0tc+(r∗)e−iH1tPc(H1),

Ω̃2
±,Hr+

= s – lim
t→±∞

eiH1tc+(r∗)e−iH0t,

Ω2
±,Hre

= s – lim
t→±∞

eiHetc−(r∗)e−iH1tPc(H1),

Ω̃2
±,Hre

= s – lim
t→±∞

eiH1tc−(r∗)e−iHet.

(3.161)

The limits are independent of the choice of c±; recall also that both He and H0 only have
absolutely continuous spectrum. [RS79, Proposition 4] shows that the ranges of both
Ω̃2

±,Hre
and Ω̃2

±,Hr+
are subsets of the absolutely continuous subspace of H1, it follows

then that:
Ω̃2

±,Hre
= Ω2∗

±,Hre
, Ω̃2

±,Hr+
= Ω2∗

±,Hr+
. (3.162)

One also has the intertwining relations on the absolutely continuous subspace of H1:

H0Ω2
±,Hr+

= Ω2
±,Hr+

H1, (3.163)

HeΩ2
±,Hre

= Ω2
±,Hre

H1. (3.164)

40. see, for example, [Lax02, Chapter 37]
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Together, Equations (3.160), (3.163) and (3.164) give:

H0Ω2
±,Hr+

Ω1
± = Ω2

±,Hr+
Ω1

±H, HeΩ2
±,Hre

Ω1
± = Ω2

±,Hre
Ω1

±H. (3.165)

Now, since the limits are independent of the choice of c± ∈ C±, one can always choose c±

such that c2
+ + c2

− = 1, consequently:

Ω2∗
±,Hre

Ω2
±,Hre

+ Ω2∗
±,Hr+

Ω2
±,Hr+

= Pc(H1). (3.166)

One could have also chosen c± such that their supports were disjoint, therefore, we
must also have:

Ω2
±,Hre

Ω2∗
±,Hr+

= Ω2
±,Hr+

Ω2∗
±,Hre

= 0. (3.167)

In other words, relation (3.166) is an orthogonal sum decomposition of the absolutely
continuous subspace of H1 and the operators (3.161) are partial isometries. We therefore
have a decomposition of Pc(H1) into incoming and outgoing states. In what follows, to
simplify notations, we consider only the direct wave operators, analogous statements can
be formulated for the reverse ones. Define:

XH1
in = (ker Ω2

+,Hre
)⊥, XH1

out = (ker Ω2
+,Hr+

)⊥.

In virtue of Equation (3.166), these subspaces have nice characterisations, indeed: XH1
in is

exactly ker Ω2
+,Hr+

∩ Pc(H1)H and ϕ ∈ ker Ω2
+,Hr+

∩ Pc(H1)H , if and only if :

lim
t→+∞

||c+(r∗)e−itH1ϕ|| = 0,

for any c+ ∈ C+. In other words, the states in XH1
in are exactly those whose energy is

concentrated on R− at late times. Similarly, ϕ ∈ XH1
out if and only if:

lim
t→+∞

||c−(r∗)e−itH1ϕ|| = 0,

for any c− ∈ C−. An important point is that Ω2
+,Hre

maps XH1
in onto a similar subspace

for He (and similarly at Hr+ for H0). If ψ is in the range of Ω2
+,Hre

, then there is ϕ ∈ XH1
in

such that:
lim
t→+∞

||e−itHeψ − c−(r∗)e−itH1ϕ|| = 0,

for any c− ∈ C−. Hence for any c+ ∈ C+, one can choose c− ∈ C− with support disjoint
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from that of c+ so that:

0 = lim
t→+∞

||c+(r∗)e−itHeψ − c+(r∗)c−(r∗)e−itH1ϕ||,

= lim
t→+∞

||c+(r∗)e−itHeψ∥.

Conversely, all such states are mapped into XH1
in by Ω2∗

+,Hre
.

Incoming and outgoing subspaces for He and H0 were originally defined using the
asymptotic velocity operators constructed in Section 3.6.6. These operators were con-
structed on each of the stable subspaces of the respective orthogonal sum decompositions
associated to each of the operators, they are:

P+
e = s – lim

t→+∞
eitHeΓ1e−itHe , P+

0 = s – lim
t→+∞

eitH0Γ1e−itH0 ,

and satisfy for any J ∈ C∞(R):

J(P+
e ) = s – lim

t→+∞
eitHeJ(r

∗

t
)e−itHe ,

J(P+
0 ) = s – lim

t→+∞
eitH0J(r

∗

t
)e−itH0 .

(3.168)

In terms of these operators, XHe
in = Ran1R−(P+

e ) = Ran1{−1}(P+
e ). Using (3.168), one

can show that XHe
in as defined above coincides exactly with the image Ω2

+,Hre
XH1

in , for
instance, for any ϕ ∈ H ,

1{−1}(P+
e )ϕ = J(P+

e )ϕ = lim
t→+∞

eitHeJ(r
∗

t
)e−itHeϕ,

for any J ∈ C∞
0 (R) such that supp J ⊂ (−∞, 0), J(−1) = 1. Hence, for any c+ ∈ C+:

lim
t→+∞

c+(r∗)e−itHe1{−1}(P+
e )ϕ = lim

t→+∞
c+(r∗)J(r

∗

t
)e−itHeϕ = 0.

The other inclusion is proved in a similar manner, one can show for example that:

lim
t→+∞

c+(r∗)e−itHeϕ = 0, for any c+ ∈ C+ ⇒ ϕ ∈ Ran1{1}(P+
e )⊥. (3.169)

Indeed, let ϕ satisfy the condition and let ψ ∈ Ran1{1}(P+
e ). A similar argument to the
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one above shows that for any c− ∈ C−:

lim
t→+∞

c−(r∗)e−itHeψ = 0.

Choose now c+ ∈ C+, c− ∈ C− such that c+ + c− = 1, then for t ∈ R:

(ϕ, ψ) = (e−itHeϕ, e−itHeψ),

= (c+(r∗)e−itHeϕ, e−itHeψ) + (e−itHeϕ, c−(r∗)e−itHeψ).
(3.170)

By the Cauchy-Schwarz inequality, it follows that for any t ∈ R:

|(ψ, ϕ)| ≤ ||ψ||||c+(r∗)e−itHeϕ|| + ||ϕ||||c−(r∗)e−itHeψ||,

The right-hand side approaches 0 as t → +∞ so that:

|(ψ, ϕ)| = 0.

We can therefore define a global wave operator from the absolutely continuous subspace
of H1 onto the external direct sum Ran1{−1}(P+

e ) ⊕ Ran1{1}(P+
0 ).

Ω2
+ : XH1

in ⊕XH1
out −→ Ran1{−1}(P+

e ) ⊕ Ran1{1}(P+
0 )

(ϕ1, ϕ2) 7−→ (Ω2
+,Hre

ϕ1,Ω2
+,Hr+

ϕ2).
(3.171)

3.7.3 Comparison III

Although the results in Section 3.6.5 can be used to construct a scattering theory for
He and H0 on the whole Hilbert space, the previous discussion shows that, for our needs,
it only relevant to do this on Ran1{−1}(P+

e ) for He and on Ran1{1}(P+
0 ) for H0. The

asymptotic profiles are given by:

H−∞ = Γ1Dr∗ ,

H+∞ = Γ1Dr∗ +
(

a

r2
+ + a2 − a

r2
e + a2

)
p.

(3.172)
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The outgoing and incoming states are identical for both of these operators and given by:

H + = Ran1{1}(Γ1), H − = Ran1{−1}(Γ1).

Due to the stability of the subspace under Γ1, He, H±∞, the results in Section 3.6.5 prove
that the following strong limits exist:

Ω3
+,Hr+

= s – lim
t→+∞

eitH+∞e−itH01R+(P+
0 ),

Ω3
+,Hre

= s – lim
t→+∞

eitH−∞

(
T exp

(
−i
∫ t

0
f̃(Γ1s)ds

))∗
e−itHe1R−(P+

e ),

Ω̃3
+,Hr+

= s – lim
t→+∞

eitH0e−itH+∞1R+(Γ1),

Ω̃3
+,Hre

= s – lim
t→+∞

eitHeT exp
(

−i
∫ t

0
f̃(Γ1s)ds

)
e−itH−∞1R−(Γ1),

One also has: Ω̃3
+,Hr+

= Ω3∗
+,Hr+

and similarly for Hre , this gives rise to a unitary
map:

Ω3
+ : Ran1{−1}(P+

e ) ⊕ Ran1{1}(P+
0 ) −→ H − ⊕ H + = H

(ϕ1, ϕ2) 7−→ (Ω3
+,Hre

ϕ1,Ω3
+,Hr+

ϕ2).

Finally, composition of Ω1
+,Ω2

+,Ω3
+ yields a unitary map W+ between Pc(H) = XH

in ⊕XH
out

and H , where:

XH
in = (ker Ω2

+,Hre
Ω1

+)⊥, XH
out = (ker Ω2

+,Hr+
Ω1

+)⊥,

given by:

W+ : XH
in ⊕XH

out −→ H − ⊕ H + = H

ϕ1 + ϕ2 7−→ Ω3
+,Hre

Ω2
+,Hre

Ω1
+ϕ1 + Ω3

+,Hr+
Ω2

+,Hr+
Ω1

+ϕ2.

Remark 3.7.1. A simple application of the above result is to define the asymptotic velocity
operator for the full dynamics. It is defined by the limits for J ∈ C∞(R),

J(P+) = s – lim
t→+∞

eiHtJ(r
∗

t
)e−iHt = W ∗

+J(Γ1)W+,

Using the results discussed in Section 3.6.6, it follows that: P+ = W ∗
+Γ1W+.
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spacetime

3.7.4 Scattering for the Dirac operator

We now return to the notations we adopted prior to Section 3.6, where we dropped
the explicit dependence of our operator Hp for notational convenience. We recall from
Section 3.4.2 that Hp coïncides with the full Dirac operator on each of the subspaces
associated with the eigenvalue p ∈ Z+ 1

2 of Dϕ. The global wave operators obtained in the
previous section, although defined on all of H , also depend on the parameter p. However
the p-eigenspace is stable so that to obtain the scattering theory for the Dirac operator
one only need to reassemble each of the harmonics. Since the Dirac operator has no pure
point spectrum 41, there is no need to project onto the absolutely continuous subspace.
Therefore, we state our final theorem:

Theorem 3.7.1. For any ϕ =
∑

p∈Z+ 1
2

ϕp(r∗, θ)eipϕ ∈ H set:

P+ϕ =
∑

p∈Z+ 1
2

P+
p ϕpe

ipϕ, (3.173)

then P+ is a bounded symmetric operator with spectrum {−1, 1}, and for any J ∈ C∞(R),

J(P+) = s – lim
t→+∞

eiHtJ(r
∗

t
)e−iHt.

Moreover, defining:

Xin = Ran 1{−1}(P+), Xout = Ran 1{1}(P+),

then, H = Xin ⊕Xout and the operator:

W+ϕ =
∑

p∈Z+ 1
2

W p
+ϕpe

ipϕ, (3.174)

is a unitary operator such that:

W+Xin = H−, W+Xout = H+,

41. see again [BC09]
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and for the full Dirac operator H + i a
r2

e+a2∂ϕ, with H defined by Equation (3.36):

H−∞W+1{−1}(P+) +H+∞W+1{1}(P+) = W+H,

with:
H+∞ = Γ1Dr∗ +

(
a

r2
+ + a2 − a

r2
e + a2

)
Dϕ, H−∞ = ΓDr∗

3.8 Conclusion

In this paper we have proposed an analytical construction for a scattering theory for
particules in a region situated between a double and simple horizon of an extreme Kerr-de
Sitter blackhole. The presence of the simple horizon alone simplified the problem consid-
erably, being an obstruction to the existence of pure-point spectrum, and the existence
of a conjugate operator in the sense of Mourre theory ruled out the possibility for any
singular continuous spectrum. The setting was therefore ideal for an analytic scattering
theory.

We found that, from an analytical point of view, the double horizon region was anal-
ogous to that of spacelike infinity in Kerr-Newmann spacetime. The theory is in fact
slightly easier because the mass terms do no persist at the horizons, meaning that things
appear to boil down to the massless case. As in this case, the reasoning hinges on the
ability to obtain a minimal velocity estimate.

The main difference and novelty is that the double horizon exacerbates the effects
of the rotation of the black hole by complicating the structure of the angular operator;
the mass also plays a lesser role here. However, this did not prove to be an essential
difficulty for the analytic methods used in this paper, which is another illustration of
their robustness.

The methods used here do however have the clear disadvantage of not being very
geometrical. In some sense, the study of the effects of the double horizon is reduced to
the distinction between long and short-range potentials; it would be considerably more
satisfying to seek a proof of the results in this paper with a clearer geometrical meaning.
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Chapter 4

PROJECTIVE DIFFERENTIAL GEOMETRY

AND ASYMPTOTIC ANALYSIS

4.1 Introduction

« What is geometry ? » : It was long thought that the geometry we learn about in our
early years at school, that is, in a naive sense, the study of figures in a plane or in 3D
space, was the only sort of geometry. By this I mean that the popular sentiment amongst
anyone interested in such questions was that the basic underlying axioms, upon which
the rest of the theory is built, are so plain and clear that it would seemingly be nonsense
to exclude any of them. Of course, there was always the famous « Parallel postulate »,
which, dealing with infinity, was arguably less obvious than the others, but there was a
strong belief that, in fact, it was not an Axiom, but a Theorem that could be proved. In
the XIXth century, it was established that the « Parallel postulate » is actually logically
independent from the other axioms, and thus flourished a whole panoply of new examples
of « geometries » in which it is false, such as projective, hyperbolic or spherical geometry.
Naturally, this lead to the question of a possible common framework in which to think
about all of these examples and it was F. Klein and his Erlangen program, that gave the
answer which pervades the modern conception of geometry.

Post-Klein, geometry is the study of a (transitive) action on a set X, by a group of
« symmetries » G. Since, for a transitive action, the set X is in one-to-one correspondence
with the quotient set G/H where H is the stabiliser of any point of X, and the action is
equivalent to the natural action of G on G/H, one can first restrict to this case. In fact,
all the « classical » geometries are covered by this :

— Affine geometry : G = Aff(n) = Rn ⋊GLn(R), H = GLn(R),

— Euclidean geometry : G = Rn ⋊ SOn(R), H = SOn(R),

176



4.1. Introduction

— Projective geometry : G = GLn+1(R) and:

H =


 λ v

0 A

 ∈ GLn+1(R), λ ∈ R∗, A ∈ GLn+1(R)

 ,
— Lorentzian geometry, G = Rn ⋊ SO+(1, n), H = SO+(1, n).

In all the above examples, G is a Lie group and H a closed subgroup of G; therefore the
quotient space G/H has a natural manifold structure. The reader may be surprised by
the groups used in our description of projective geometry, as she probably expected to see
the usual projective group GLn+1(R)/N where N is the normal subgroup formed by the
homothetic transformations of Rn+1. There is, in fact, a diffeomorphism : GLn+1(R)/H ∼=
(GLn+1(R)/N)/(H/N); the advantage of the groups above is that they are matrix Lie
groups.

E. Cartan took Klein’s program further, by defining curved versions of Klein geome-
tries, known as Cartan geometries, of which more familiar pseudo-Riemannian geometry
is actually an example. Before exploring this direction further in paragraph 4.1.1, let us
first note that on the same manifold X, it is completely possible to consider the smooth
action of different groups nested in one another. In our particular case it will be inter-
esting to consider a larger group than the initial group G. This will possibly result in
reducing the number of geometric invariants, causing a probable loss of information, but,
it is sometimes the case that the weakened structure has an extension to a larger space
containing X. It is in this spirit, that in General Relativity, we sometimes seek what is
known as geometric compactifications of a pseudo-Riemannian geometry (M, g). The most
prominent example being that of conformal compactifications. In a sense to be later made
precise, a spacetime (M, g) is a curved version of Lorentzian geometry as described above.
To construct a possible conformal compactification, we weaken the geometric structure
by allowing conformal variations of the metric g → Ω2g. The metric g itself is therefore
no longer a geometric invariant, but its conformal class [g] is. Via this operation we have
implicitly replaced the G of Lorentzian geometry by the larger conformal group C(1, n).

A conformal compactification is possible when M can be made into the interior of a
larger manifold with boundary M = M ∪∂M such that the conformal class extends to the
boundary ∂M . The boundary is then referred to as the (conformal) infinity of spacetime
and one can use M to study the asymptotic behaviour of objects living in M . The reader
will find an excellent introduction to this topic in [18].

Conformal geometry is very rich, and conformal compactifications can be useful in
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Chapter 4 – Projective differential geometry and asymptotic analysis

the study of the wave equation. The underlying reason for this success is, in addition to
the existence of a conformally invariant Laplace operator, that the light-cone structure
remains a geometric invariant. However, for fields with mass on asymptotically flat space-
times, it is likely that this is not the right structure, because the part of the boundary
where we would want to encode the asymptotic information is generally reduced to two
points !

As a possible remedy to this drawback, in what follows we shall consider a different
type of geometric compactification, first introduced in [ČG14], known as a projective
compactification. The picture is very similar to the conformal case: we want to weaken
the geometric structure of (M, g), but, instead of just the light cone, we would like the set
of all oriented unparametrised geodesics to be a geometric invariant of the new geometry.
Therefore it is the Levi-Civita connection of g, rather than g itself, that will be at the heart
of our considerations. The idea is to consider the class [∇g] of all torsion-free connections
∇̂ on TM that have the same unparametrised geodesics as ∇g. We will find that, from
the perspective of Klein/Cartan, the group Rn+1 ⋊ SO+(1, n) is enlarged to SLn+1(R).

Minkowski spacetime has a projective compactification, that we will describe in Sec-
tion 4.4, and the projective infinity has a very interesting structure: it splits up into
different orbits, each of which one can identify with either timelike, spacelike and lightlike
infinity, and, what is more, time-like infinity is not just a singleton. This turns out to
be characteristic of possible projective compactifications of scalar flat pseudo-Riemannian
manifolds, cf. [FG18]. It is our hope that, thanks to this, the projective compactification
will enable us to develop analogous techniques to those of conformal geometry to massive
equations on asymptotically flat spacetimes.

Other results corroborate the hope we place in projective compactifications, and in
particular, a result due to L. Hörmander [Hör97, Theorem 7.2.7] with an implicit projec-
tive flavour. Hörmander derives an asymptotic expansion of solutions to the Klein-Gordon
equation on Minkowski space time M ∼= R1+n in which the coefficients are only dependent
on the projective parameter x

t
, which leads us to believe that they can be interpreted in

terms of the projective compactification. However, his proof relies on a decomposition of
the field into positive and negative frequency parts. This is achieved through the diago-
nalisation, in Fourier space, of the Klein-Gordon operator with domain L2(Rn) ×H1(Rn)
defined by:

KG =
 0 ∆ −m2

1 0

 .
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This « diagonalisation » reduces the study of the equation ∂ψ
∂t

= KGψ to that of two uncou-
pled equations involving the pseudo-differential operators ±i

√
−∆ +m2. The asymptotic

expansion results from a precise study of an integral formula for the solutions to these
equations. Precisely, Hörmander shows that if u ∈ S ′(R1+n) is a solution of :

 ∂tu = i(−∆ + 1) 1
2u,

u(0, x) = φ(x), φ ∈ S(Rn),

then u(t, x) = U0(t, x) + U+(t, x)e
i
ρ , with U0 ∈ S(R1+n), ρ = (t2 − |x|2)− 1

2 , and 1:

U+(t, x) ∼ (+0 + iρ)n
2

∞∑
0
ρjwj(t, x).

Setting x̃ = ρx and writing the Fourier transform of φ, φ̂, we have furthermore:

w0(t, x) =

 (2π)−n/2
√

1 + |x̃|2φ̂(−x̃) if t2 > |x|2,
0 otherwise.

From this, we notice immediately that w0 is a function of x
t
; it can be shown that this

is also the case for wj, j > 0. Moreover, the functions (ρ, x̃) define a coordinate system
on the interior of the future lightcone {t > |x|}. These coordinates are regular at ρ = 0,
which can be identified with future timelike infinity in the projective compactification.
This gives further motivation to the conjecture that the coefficients wj can be interpreted
geometrically in terms of the compactified space.

However, a major difficulty of projective geometry in the study of equations with
physical meaning, is that the connections in a projective class p = [∇] are not necessarily
the Levi-Civita connection for some metric. Hence, unlike in conformal geometry, there
is no induced change on the metric when we change connection : g is fixed and may, or
may not, have an extension to the boundary. By consequence, once we have parted from
the physical Levi-Civita connection, not of all the operators we can write down will have
a clear-cut physical interpretation. For instance, even if ∇̂ is projectively equivalent to
the Levi-Civita connection of some metric g, then gab∇̂a∇̂b is not, a priori, the Laplace
operator for some other pseudo-Riemannian metric.

For a general projective class p, the presence of a Levi-Civita connection is governed

1. (+0 + iρ)n/2 = limε→0+ exp( n
2 log(ε + iρ)) = ρn/2einπ/4 where log the Principal complex logarithm.
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by the so-called Metrisability equation [EM08]:

∇cσ
ab − 2

n+ 1∇dσ
d(aδb)c = 0. (ME)

In the above, the unknown is σab ∈ S2TM(−2) 2. The Metrisability equation is projectively
invariant, i.e. if σab satisfies (ME) for some connection ∇ ∈ p then it satisfies it for any
connection ∇̂ in the class. When there is a solution the projective class is said to be
metric.

Any solution σab to the Metrisability equation induces a symmetric bilinear form
g = σσab whose Levi-Civita connection is in the projective class. Here :

σ = ε2
a1a2...anb1...bn

σa1b1 . . . σanbn ,

and ε2
a1a2...anb1...bn

is the canonical 3 map ΛnTM ⊗ ΛnTM → E (2n+ 2).
The precise geometry of solutions to (ME) and the relationship with projective com-

pactifications are studied in [FG18]. In our particular problem, we start with a Lorentzian
manifold (M, g), which leads to a solution of (ME). So we are mainly interested in the
consequences that this has, in particular, the fact that each solution σab corresponds to
a section HAB of a certain « tractor » bundle. These bundles will be introduced in Sec-
tion 4.3 and we will discuss Equation (ME) in more detail in Section 4.5.1. For now, we
note simply that they can be defined as tensor powers of the 1-jet prolongation of E (1),
J1E (1) and its dual; this is the approach adopted in [BEG94; ČGM14; ČG14]. Our path
will be closer in spirit to Cartan’s work.

The fact that we work with a class of affine connections, rather than one in particular,
means that many of the expressions involving a covariant derivative that we write on TM
will not make sense on the projective manifold (M,p). This is because they will depend
on the connection used to write them down. It is sometimes possible to recover invariance
if we work with weighted tensors, as was the case in the Metrisability equation (ME).
Another example of this is the Projective Killing Equation :

∇(avb) = 0, (4.1)

2. Recall that if B is a vector bundle on M , B(ω) is the tensor bundle B ⊗ E (ω) where E (ω) is the
bundle of projective densities of weight ω ∈ R, cf. Definition 1.4.1.

3. ΛnTM ⊗ ΛnTM is canonically oriented, so this map exists even if M is not orientable, if M is
oriented, then we can consider the « square » of a volume form.
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which is projectively invariant if vb ∈ Eb(2). Alternatively, a very important property of
the tractor bundles is that a projective class p of affine connections on TM determines an
affine connexion on them. This connection enables us to define an operator on projective
densities and weighted tractors, known as the Thomas D-operator, DA, which satisfies
the Leibniz rule and can be iterated. It is a major tool for producing projectively in-
variant differential operators. In particular, equipped with a solution to the Metrisability
equation, one can consider the operator HABDADB; a natural candidate for a projec-
tive Laplacian operator. Unfortunately, for scalar flat metrics, HAB is degenerate and the
operator HABDADB, will contain no terms that we can assimilate to a mass.

The work presented in this final chapter are the first steps towards understanding how
one apply these results to the asymptotic analysis of fields. The original ambition was to
obtain a geometric proof, via methods of projective differential geometry, of Hörmander’s
result in Minkowski spacetime. However, it turned out that Minkowski spacetime and,
more generally, scalar flat metrics are an exceptional case where a part of the structure
degenerates, and it is not quite clear as to how one can overcome the obstructions this
entails. This realisation lead me to study in deeper detail the non-scalar flat case, where a
number of results already exist in conformal geometry and to question to what extent there
are projective analogues. The main bulk of this work is presented in Section 4.7 where a
projective exterior tractor calculus is developed that enables us to obtain a formal solution
operator for the Proca equation, extending to projective geometry results parallel to those
developed in [GW14; GLW15] in Conformal geometry.

My understanding of the topic was significantly advanced during a trip to Auckland
in New Zealand financed by the University of Western Brittany, the Brittany region and
ED MathSTIC to whom I express once more my gratitude.

4.1.1 Cartan geometries

In his article [Car23], E. Cartan gives an alternative definition of affine connections
to the one used in standard textbooks on Differential Geometry. This definition is also
distinct, although closer in spirit, to the Principal Connection version we discussed in
Section 1.3 : it is based on a aff(n)- valued differential form (as opposed to a gln valued
one). The picture behind Cartan’s definition is to first imagine attaching to each point
of a manifold a copy of affine space. In Cartan’s mind, the information then required to
locally identify a small open subset of the manifold to an open subset of affine space is a
« rule » that describes how to merge into one the affine spaces attached to neighbouring
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points. Assume we assign to each point an affine frame, based at that point, of the space
attached to it in such a way that they vary smoothly. After merging the affine spaces
attached to two infinitely neighbouring points, then, the relationship between the two
frames is an affine transformation « infinitely close » to the Identity map : this can be
encoded in an element of aff(n), and, in fact, all the useful information of the « merging
rule » is contained in this form.

Cartan generalises these ideas to the projective group in [Car24] and later, to other
Klein geometries G/H. Over the space G/H there is a canonical structure that globally
encodes the information of the « infinitesimal transformations » described above: the
Maurer-Cartan form of G. Recall that it is the g-valued differential form defined for any
vector field X ∈ Γ(TG) by:

θG(X)(g) = (dLg−1)g(X).

With the canonical projection of G onto G/H, G can be seen as a smooth H-principal
fibre bundle over the base G/H, which we will think of as a frame bundle. With respect
to this structure, θG satisfies the following :

1. ∀h ∈ H,R∗
hθG = adh−1θG.

2. For any X ∈ h, the fundamental field 4 X∗ satisfies:

θG(X∗) = X.

3. For each p ∈ G, θGp : TpG → g is a vector space isomorphism.

4.
dθG + 1

2[θG ∧ θG] = 0. 5 (4.2)

To recover Cartan’s local gauge version, we can simply take a section G/H → G, and use
it to pull-back θG over X. The section can be thought of as the smooth assignment of a
frame in the affine space attached to each of the points we mentioned in the introduction.

The above properties have a close ressemblance to Definition 1.3.6, but, θG is clearly
not a principal connection on G (seen as a H-principal bundle over G/H) since it maps
to g and not h. Furthermore, Condition 3 shows that at each point the kernel is {0} and

4. cf. Definition 1.3.5
5. If α, β are g valued 1-forms then for all vector fields X, Y , we set: [α ∧ β](X, Y ) = [α(X), β(Y )] −

[α(Y ), β(X)] where [ , ] is the Lie bracket in g, see also Appendix C.
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so it does not define an interesting horizontal distribution.
Equation (4.2), in fact, characterises locally the manifold G/H; it is an integrability

condition. Due to this, the equation should not be imposed in the curved version: the
failure to respect this condition is a measure of curvature. We are therefore lead, to the
following definition (cf. [Sha97, Definition 5.3.1])

Definition 4.1.1. Let G be a Lie group, H a closed subgroup of G and g, h be their re-
spective Lie algebras. A Cartan geometry, (P, ω) modeled on (G,H) is a smooth manifold
M and:

— a H-principal fibre bundle over M , (P, π,M),

— a g-valued differential form, ω, on P that satisfies :
1. for any h ∈ H,R∗

hω = adh−1ω,

2. for any X ∈ h, ω(X∗) = X,

3. for each p ∈ P , ωp : TpP → g is a vector space isomorphism.

Although the Cartan connection ω is not a principal connection on P , it induces a principal
connection α on the associated fibre bundle Q = P ×H G where H acts on G by left
multiplication. 6.

Note that Definition (4.1.1) has an equivalent version analogous to Definition 1.3.4:

Definition 4.1.2. Let G be a Lie group, H a closed subgroup and g, h their respective
Lie algebras. A Cartan connection on M is a family of g-valued differential forms, (ωU),
associated with an open cover U of the manifold M , and a family of transition functions
hUV : U ∩ V → H,U, V ∈ U such that ωUxmod h : TxM → g/h is a vector space
isomorphism for each x ∈ U and:

ωV = h∗
UV θH + adh−1

UV
ωU , (4.3)

where θH is the Maurer-Cartan form of H.

Remark 4.1.1. The definition given here is apparently more restrictive than the one
in [Sha97] because we require that the transition functions hUV be given in advance.
Sharpe [Sha97] shows that this is really superfluous when the largest normal subgroup of
G contained in H is simply {e}; if this condition is satisfied, the geometry is called an
effective Cartan geometry.

6. For instance, we can construct ω in local bundle charts of Q.
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In conclusion to this introduction, we would like to explain the link between Cartan’s
notion of affine connection and the classical Definition 1.3.1. Suppose that P is a Cartan
geometry on a manifold M modeled on affine space. The key is to note that the so-called
adjoint representation of GLn(R) on affn(R) is reducible and has the following stable
direct sum decomposition :

affn(R) = gln(R) ⊕ Rn. (4.4)

Consequently, the Cartan connection ω can be split as: ω = α+ η. Since gln(R) is stable
under the adjoint action of GLn(R) on affn(R), α is actually a Principal Connection on
P . Similarly, studying the restriction of this action on the stable subspace Rn, we find
that η is an equivariant 7 (R∗

gη = g−1η) and horizontal (if X ∈ ker dπp, ηp(X) = 0) Rn-
valued one form 8 known as the solder form. The pair (α, η) is completely equivalent to ω.
However, on the frame bundle L(TM) of the tangent bundle, there is a canonical choice
for η, specifically p = (x, ux) ∈ L(TM), X ∈ TpL(TM),

ηp(X) = u−1
x (dπp(X)).

It follows that one only needs to specify a principal connection on L(TM) in order to
define an affine connection in Cartan’s sense. Note that this generalises mutatis mutandis
to the frame bundle of any vector bundle. Our usual affine connections on vector bundles
are therefore equivalent to Cartan affine connections, with the canonical choice of solder
form.

4.2 Projective differential geometry

4.2.1 The Model

Unlike Cartan we will not quite work with classical projective space per se. In fact our
model is an oriented version of projective geometry : SLn+1(R)/H. Here :

H =


 (det(A))−1 v

0 A

 ∈ SLn+1(R), A ∈ GL+
n (R), v ∈ M1,n(R) ∼= (Rn)∗

 . (4.5)

7. For the fundamental representation of GLn(R).
8. This means that it is a TM -valued one form, see Appendix C.
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4.2. Projective differential geometry

The model is easier to imagine as the set of all oriented rays 9,P+(Rn+1), in Rn+1, or,
equivalently, the quotient space of Rn+1\{0} under the natural action of the multiplicative
group R∗

+ on Rn+1. The reader can find a very complete introduction to the topic in [Sto87].
For our needs, a major advantage is that the action of SLn+1(R) on P+(Rn+1), defined

by the commutative diagram in Figure 4.1, is effective. One can also remark that the
largest normal subgroup of SLn+1(R) contained in H is {Id}, and so it is also an effective
Klein geometry 10.

Rn+1 \ {0} Rn+1 \ {0}

P+(Rn+1) P n
+(Rn+1).

B

π π

ρ(B)

Figure 4.1 – Definition of the action of SLn+1(R) on P+(Rn+1), π is, as usual, the canonical
projection. B ∈ SLn+1(R).

Topology-wise, P+(Rn+1) is homeomorphic to the n-sphere Sn and is a two-sheeted
covering of usual Projective space; for this reason we will also refer to P+(Rn+1) as the
« projective sphere ». The notion of homogenous coordinates naturally carries over : the
fibre of π : Rn+1\{0} → P+(Rn+1) above a point p, is the oriented ray R∗

+u = {λu, λ ∈ R∗
+}

for some certain non-zero vector u. The homogenous coordinates of p are defined to be
the equivalence class of all the coordinates of non-zero vectors in the ray, with respect to
the canonical basis of Rn+1; we will simply write : [u1, . . . , un+1]. This leads to a natural
description of a differential atlas made up of the open sets :

U+
i0 = {p ∈ P+(Rn+1), ui0 > 0, u ∈ π−1({p})},

U−
i0 = {p ∈ P+(Rn+1), ui0 < 0, u ∈ π−1({p})},

where the coordinate maps are defined by:

[u1, . . . , ui0 , . . . , un+1] 7→
(
u1

|ui0|
, . . . ,

ui0−1

|ui0|
,
ui0+1

|ui0|
, . . . ,

un+1

|ui0|

)
∈ Rn.

For later reference, we would like to point out that on, for instance, U+
n+1, there is a

9. as opposed to the set of all lines
10. cf. [Sha97, Chapter 4, §3].
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local section SLn+1(R) → SLn+1/H ∼= P+(Rn+1) given by:

σU+
n+1

= [u1, . . . , un+1] 7−→

 1 0
γ([u1, . . . , un+1]) In

 ,

γ([u1, . . . , un+1]) =


u1
un+1...
un

un+1

 .

Moreover, if p = [u1, . . . , un+1] ∈ U+
n+1, then setting Xi(p) = ui

un
, the pull-back by σU+

n+1
of

the Maurer-Cartan form ωG can be expressed as :

σ∗
U+

n+1
ωG =


0 0 . . . 0

dX1 0 . . . 0
... ... . . . ...

dXn 0 . . . 0

 . (4.6)

It will be useful to have this in mind when we discuss the projective compactifications of
affine and Minkowski space in Paragraph 4.4.

Similarly to classical projective geometry, there is also an affine model of oriented
projective space : consider in Rn+1 the two affine hyperplanes H± = {xn+1 = ±1}. Any
oriented ray, not lying in the hyperplane H∞ = {xn+1 = 0}, meets exactly one of H± at
exactly one point. P+(Rn+1) \ π(H∞ \ {0}) is hence in one-to-one correspondence with
the union of these two planes. π(H∞ \ {0}) plays once more the role of « hyperplane at
infinity ». One can think of H± as the two faces of a same sheet of paper, the front-side
being positively oriented and the back-side negatively so.

The primitive objects of this geometry are « oriented subspaces ». In order to preserve
the useful notion of projective duality, if B and B′ are two bases of the same linear
subspace V ⊂ Rn+1 we are lead to distinguish the image of the subspace generated by B

from that of B′ when the two bases have different orientation. The important point for
us, specifically for our later description of the projective compactification of Minkowski
spacetime, is that if we restrict to one of the faces of oriented projective space, we recover
a model for an oriented vector space. Additionnally it is compactified by, intuitively,
appending two points to each line.

In what follows, we will refer to a Cartan geometry over M with model geometry
(SLn+1(R), H) (H is defined by (4.5)) as a projective structure over M .
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4.2. Projective differential geometry

4.2.2 Projectively equivalent affine connections

Given a smooth manifold M and an affine connection ∇ on its tangent bundle, the
unparametrised geodesics of ∇ give rise to a projective structure, in the sense defined
above, on M . This result was discovered independently by É. Cartan [Car24] and T.
Thomas [Tho34]. In his work, Cartan focusses on the projective connection, whereas
Thomas defines an affine connection in the usual sense on a new vector bundle, later
to be called the « tractor bundle » when the theory was rediscovered by T.Bailey, M.
Eastwood and A. R. Gover. In their founding article [BEG94], they translate Thomas’
work into more modern language and give an efficient introduction to the theory.

In this section, we will adopt an intermediate perspective between that in [Car24]
and [Tho34]. Unless otherwised specified, M is a smooth orientable manifold; the ori-
entability assumption serving only as a means to simplify our discussion. We recall that
an affine connection is torsion-free when :

∇XY − ∇YX = [X, Y ].

In terms of the local connection form (ωij)1≤i,j≤n associated to an arbitrary local moving
frame (ei) of TM with dual basis (ωi) this is expressed as:

dωi + ωik ∧ ωk = 0, (First structure equation). (4.7)

Remark 4.2.1. If η is the canonical solder form, then the torsion free assumption can be
expressed as : d∇η = 0, where d∇ is the exterior covariant derivative. (cf. appendix C).

Definition 4.2.1. Let ∇, ∇̂ be two torsion-free affine connections (as defined in Defini-
tion 1.3.1) on the tangent bundle TM . We will say that ∇, ∇̂ are projectively equivalent
if and only if they have the same unparametrised geodesics. A projective structure on
M , written, p or [∇], is an equivalence class of projectively equivalent torsion-free affine
connections. We will refer to (M,p) as a projective manifold.

We begin our study of this structure, with a useful characterisation, due to Weyl, of
projectively equivalent connections.
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Proposition 4.2.1. Two torsion-free affine connections ∇ et ∇̂ are projectively equiva-
lent if and only if one can find a form Υ ∈ Γ(T ∗M) such that for any η, ξ ∈ Γ(TM):

∇̂ξη = ∇ξη + Υ(η)ξ + Υ(ξ)η. (4.8)

We will write:
∇̂ = ∇ + Υ. (4.9)

Remark 4.2.2. In the abstract index notation, Equation (4.8) can be written:

∇̂aη
b = ∇aη

b + Υcη
cδba + Υaη

b = ∇aη
b + 2Υ(aδ

b
c)η

c. (4.10)

Proof. For the proof, we will continue to use Penrose’s abstract index notation, which
greatly clarifies the main arguments. First note that the map ηb 7→ ∇̂aη

b − ∇aη
b is

tensorial 11 , so, one can find Γbac ∈ Ebac such that for each ηb:

∇̂aη
b − ∇aη

b = Γbacηc.

The torsion-free assumption leads to the symmetry : Γbac ∈ Eb(ac), i.e. Γbac = Γbca. Hence it is
sufficient to determine Γbacηaηc for any η ∈ Γ(TM); Γbac is determined by the polarisation
identity.

The value of Γbacηaηc = ∇̂ηη − ∇ηη at a given point p ∈ M only depends on that of
η(p), so we can evaluate it by following a geodesic ∇ that satisfies the initial conditions
γ(0) = p, γ̇(0) = η(p). By the geodesic equation, we have :

Γbacηaηc = ληb,

for some scalar field λ. Since the left-hand side is quadratic, one can find Υa such that
λ = 2Υaη

a and, hence :
Γbac = 2Υ(aδ

b
c).

11. In this context, a C∞(M) linear map.
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4.2. Projective differential geometry

4.2.3 Thomas’ projective differential invariant and the projec-
tive connection associated with a projective class [∇]

We will now choose a local section σU of the linear frame bundle L(TM) and denote
by (ei) the associated local frame on U . Concordantly, we write (ωi) for the dual frame.
Equation (4.10) can be re-written in terms of the respective local connection forms ωU =
(ωij) and ω̂U = (ω̂ij) of ∇ et ∇̂ in the following way :

ω̂ij = ωij + Υ(ej)ωi + Υδij. (4.11)

If we take the trace in this expression, then :

ω̂kk − ωkk = (n+ 1)Υ, (4.12)

Moreover, if we reinject (4.12) into (4.11), we find that:

ω̂ij − 1
n+ 1 ω̂

k
k(ej)ωi − 1

n+ 1 ω̂
k
kδ
i
j = ωij − 1

n+ 1ω
k
k(ej)ωi − 1

n+ 1ω
k
kδ
i
j. (4.13)

Thus, the quantity:
ωij − 1

n+ 1ω
k
k(ej)ωi − 1

n+ 1ω
k
kδ
i
j,

is independent of the choice of connection in the class [∇]. Let us call it : ΠU = (Πi
j).

Note that, like ωU , ΠU satisfies Equation (4.7), i.e.

dωi + Πi
k ∧ ωk = 0. (4.14)

Nonetheless, the family (ΠU) does not define an affine connection on L(TM), unless we
restrict to transition functions with positive unit determinant. Indeed, if σV = σUg, g :
U ∩ V → GLn(R), then on U ∩ V :

ΠV = g−1dg + g−1ΠUg − 1
n+ 1tr(g−1dg)In − 1

n+ 1g
−1Ag, (4.15)

where A is the matrix-valued differential form Aij = tr(g−1dg(ej))ωi.

However, it is possible to view ΠU as a submatrix of a projective connection ϑU with
values in sln+1(R). To this end, we use the orientability assumption to restrict to transition
functions g(x) ∈ GLn(R) with positive determinant, det(g(x)) > 0. Our question is
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whether or not one can lift each g(x) to an element h(x) ∈ H and find sln+1(R) valued
forms, ϑU , subject to the transformation rule given by Equation (4.3). Let us set :

h =
 det(g)− 1

n+1 γ

0 det(g)− 1
n+1 g

 ∈ H and ϑU =
 0 αU

βU ΠU

 ∈ sln+1(R),

where γ, αU and βU are unknowns. Evaluating h∗θH = h−1dh, one finds:

h−1dh =
 − tr(g−1dg)

n+1 det(g)
1

n+1dγ − det(g)
1

n+1γg−1dg + det(g)
1

n+1 tr(g−1dg)
n+1 γ

0 g−1dg − tr(g−1dg)
n+1 I

 .
Additionally, adh−1ϑU = h−1ϑUh is: − det(g)

1
n+1γg−1βU αUg − det(g)

2
n+1γg−1βUγ − (det(g))

1
n+1γg−1ΠUg

g−1βU det(g)
1

n+1 g−1βUγ + g−1ΠUg.

 . (4.16)

Their sum must be equal to θV . We inspect each component separately, beginning with
ΠU . Our constraints translate to the fact that βU et γ must satisfy :

det(g)
1

n+1 g−1βUγ + g−1ΠUg + g−1dg − tr(g−1dg)
n+ 1 I = ΠV ,

taking into account Equation (4.15) this reduces to:

det(g)
1

n+1 g−1βUγ = − 1
n+ 1g

−1Ag. (4.17)

According to (4.16), under change of basis βU behaves like a column vector of 1-forms, in
which each component transforms like an element of the dual basis. We therefore have a
solution if we set :

βU =


ω1

...
ωn

 , γ = − det(g)
−1

n+1
γ′

n+ 1g, (4.18)

where we define : γ′ =
(

tr(g−1dg(e1)) . . . tr(g−1dg(en))
)
. In this case we also have :

− det(g)
1

n+1γg−1βU = tr(g−1dg)
n+ 1 ;

and the condition on the first component of the matrix is immediately satisfied. It only
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remains to choose αU ; a straight-forward computation shows that:

dγ = −tr(g−1dg)
n+ 1 γ − det(g)

−1
n+1

dγ′

n+ 1g + γg−1dg

n+ 1 ,

and,
γg−1βUγ = − det(g)

−1
n+1

tr(g−1dg)
n+ 1 γ.

Therefore, we must have :

αV = αUg − dγ′

n+ 1g − tr(g−1dg)
(n+ 1)2 γ

′g + γ′

n+ 1ΠUg. (4.19)

The solution now is to use ΠU to form quantities of the right nature and study their
transformation rules. We also note that when, for any x ∈ U ∩ V , det g(x) = 1 , i.e. when
ΠU behaves like an affine connection, then Equation (4.19) reduces to αV = αUg.

There is a natural quantity one can construct from ΠU , namely :

ΩU = dΠU + ΠU ∧ ΠU ;

when ΠU behaves like a connection this is its usual curvature form. The interesting point
is that the column vector :

1
n− 1Ωi

j(·, ei),

where Ωi
j are the components of ΩU , transforms exactly according to Equation (4.19).

The proof of this is given in Appendix D, as it gives no further insight.
Putting these steps together, we have constructed a solution to our initial problem :

θU =
 0 1

n−1Ωi
j(·, ei)

ωi ΠU

 , (4.20)

Lifting a transition function g to h defined by: (det g)
−1

n+1 −(det g)
−1

n+1 tr(g−1dg(ej))
0 (det g)

−1
n+1 g

 . (4.21)

One can show that the resulting family satisfies Proposition 1.3.2 and can be used to
construct the H-principal bundle over M of Definition 4.1.1. For this, one considers the
quotient space ∐U ×H/ ∼ of the coproduct ∐U ×H indexed by an orientation atlas of
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the base M for the equivalence relation ∼ defined on ∐U ×H by :

(x, h1) ∈ U ×H ∼ (x, h2) ∈ V ×H ⇔

 x ∈ U ∩ V,

h2 = hUV (x)−1h1,

where hUV (x) is the lift of gUV defined according to Equation (4.21).
Incidentally and contrary to the impression given by some of the apparently arbitrary

choices made in our construction, this projective connection is in fact uniquely determined
by conditions we will describe in the next section.

Remark 4.2.3. The matrix notation we used throughout this section corresponds to the
following direct sum decomposition of sln+1(R):

sln+1(R) = Rn ⊕ gln(R) ⊕ (Rn)∗ = g−1 ⊕ g0 ⊕ g1.

This is in fact a |1|-grading of the Lie algebra. Although it may seem quite inessential in
our presentation, such a |k|-grading of the Lie algebra is the theoretical origin for some of
the nicer properties of parabolic geometries. We refer the interested reader to the textbook
reference [AJ09]. It should be noted that this decomposition should be distinguished from
the one in Equation (4.4), because it is not stable under the adjoint action of H on
sln+1(R).

4.2.4 The geodesics of a projective connection

We will now describe in what sense the above projective connection induced by a class
of projectively equivalent affine connections is unique. Following Cartan, we will generalise
the notion of geodesics to a projective connection. An alternative description can be found
in [Sha97].

Let M be a smooth manifold with projective structure (P, ω). Let us consider the
associated bundles :

Q = P ×H SLn+1(R) and E = Q×SLn+1(R) SLn+1(R)/H.

In the second case, SLn+1(R) acts on SLn+1(R)/H in the usual way by left multiplication;
the bundle E is probably the closest thing to Cartan’s idea of gluing a copy of projective
space to each point of M . In this paragraph, we describe how to use the Cartan connection
to define a Parallel Transport operator on E. This enables us to carry points from nearby
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4.2. Projective differential geometry

fibres into the one above the point x0. To simplify notation, we set in this paragraph
G = SLn+1(R). The reader might note that this part of the discussion is essentially
independent of the Lie groups G and H.

Firstly, E has a canonical section, analagous to a « choice of origin » in each of its
fibres. To see this, first note that E and Q are respectively quotient spaces of the manifolds
Q × G/H and P × G. Thus, elements of E are in fact equivalence classes {(q, gH)}, q ∈
Q, g ∈ G such that {qg′, g′−1gH} = {q, gH} for any g′ ∈ G. Similarly, elements of Q are
equivalence classes : [p, g], p ∈ P, g ∈ G that satisfy [ph, h−1g] = [p, g] for any h ∈ H.
With this notation, set for any x ∈ M :

s(x) = {[p, e], eH}.

In the above p an arbitrary element of the fibre over x in P . s(x) is completely independent
of the choice of p as if h ∈ H then:

{[ph, e], eH} = {[p, h], eH} = {[p, e] · h, eH} = {[p, e], hH} = {[p, e], eH}.

We now pause to discuss how a Cartan connection defines a parallel transport on E.
Let x0 ∈ M and γ a curve on M subject to the initial condition γ(0) = x0. Recall that, ω
induces a principal connection on Q which allows us to horizontally lift vector fields over
M to vector fields over Q. Therefore, for each element q in the fibre Qγ(0) over γ(0), we
can formulate the Cauchy problem : ˙̃γ(t) = Hor(γ̇(t)),

γ̃(0) = q.
,

where Hor( ˙γ(t)) is the horizontal lift of the velocity field of γ. By consequence, for suffi-
ciently small values of t, one can define an invertible operator,

T γγ(0),γ(t) : Qγ(0) → Qγ(t).

Since a maximal solution to the Cauchy problem is unique, one has :

T γγ(0),γ(t)(qg) = T γγ(0),γ(t)(q)g. (4.22)
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Parallel transport on E, can then be defined by :

{q, gH} 7→ {T γγ(0),γ(t)(q), gH}. 12

Equation (4.22) guarantees that this is well-defined.
Using the section s for any sufficiently small values of t, one can pull s(γ(t)) from the

fibre Eγ(t) over γ(t) into the fibre above γ(0), Eγ(0). This results in a curve γ̃ in Eγ(0), known
as the development of γ. A « geodesic » of the projective connection ω will be defined
as a curve γ whose development is contained in a projective line. In paragraph 4.2.3, the
projective geodesics of our projective connection are the unparametrised geodesics of the
class of affine connections [∇].

In his article [Car24], E. Cartan studies under what circumstances two projective con-
nections ω and ω′ have the same geodesics. He shows that there is in fact a certain amount
of freedom in the projective curvature form Ω = dω + 1

2 [ω ∧ ω]. Exploiting this freedom
to simplify the projective curvature form, Cartan then determines a unique projective
connection known as the Cartan « normal » connection.

To describe this « simplification », Cartan first notes that it is always possible to choose
a connection such that Ω is in fact h-valued. When this condition is satisfied, the section
is said to be « torsion free » 13. Equation (4.14) is the local coordinate expression of the
fact that the projective connection (4.20) is torsion-free.

Cartan then shows that one of the « traces » of Ω can be set to 0. More specifically,
if Ω̃i

j is the local form of the curvature Ω, then, for any j ∈ J1, nK, one can impose the
condition that:

n∑
i=1

Ω̃i
j(·, ei) = 0, (4.23)

without changing the projective geodesics. Here, the basis (ei) is not arbitrary (otherwise
the condition would not be invariant), it is determined by the direct sum decomposition:

sln+1(R) = Rn ⊕ gln(R) ⊕ (Rn)∗.

Breaking up the connection form according to this decomposition, the Rn term is a vector
of 1-forms (ωi) that constitue a local frame of T ∗M 14 ; the basis (ei) in the above formula

12. The formula can be understood as follows: the parallel transport of a point expressed as gH in the
frame q, is the point that is expressed as gH in the frame obtained by parallel transporting q along γ.

13. Definition 5.3.1 in [Sha97]
14. Recall that the local connection forms restrict to isomorphisms TxM → g/h.
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is the dual basis to (ωi). It is easy to check that our projective connection in 4.2.3 satisfies
this condition and is therefore Cartan’s normal connection. One might also remark that,
a Cartan connection satisfying the above described conditions determines an equivalence
class of affine connections. Suppose the local form of U is given by : −tr(Π) αj

ωi Π

 .
If tr(Π) ̸= 0 then one can remove it by performing a local projective transformation of
the form  1 v

0 In

 ,
where the components of the column vector v correspond exactly to the coordinates of
tr(Π) in the basis (ωi). After this, one can use Equation (4.13) to determine an affine
connection ωij for any arbitrary choice of Υ ≡ ωkk .

Remark 4.2.4. Our « normalisation » condition (4.23) is a literal translation of the one
Cartan gave in [Car24]; in this form, to the author, it remains relatively inextricable.
According to [Sha97], there is nevertheless a more geometric interpretation if one studies
a little more the curvature form.

4.3 Projective tractors and their calculus

4.3.1 Definition

We finally have all the material required to introduce the tractor bundle alluded to in
the introduction. Let us define, once more, Q = P ×H SLn+1(R), where H acts by left
multiplication.

Definition 4.3.1. The tractor bundle T is the associated vector bundle Q×SLn+1(R)Rn+1

where SLn+1(R) acts on Rn+1 in the usual canonical way. In abstract index notation the
module of smooth sections of T will be written EA 15.

The specific form of our transition functions defined by Equation (4.21) furnishes
important information about the structure of the bundle T . Using our notation from
Paragraph 1.4.2 and Definition 1.4.1, one has :

15. i.e. capital latin letters will be used to denote tractor indices.
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Proposition 4.3.1. There is a short exact vector bundle sequence:

0 −→ E(−1) X−→ T Z−→ TM(−1) −→ 0. (4.24)

Furthermore, choosing a connection in the class ∇ ∈ p, the sequence right-splits and we
have the non-canonical isomorphism:

T
∇∼= E(−1) ⊕ TM(−1).

Proof. The maps in the sequence can be read off from Equation (4.21) and are all con-
structed in the same manner as the map giving the isomorphism, so we will only prove
this final point. Let ∇ ∈ p and consider the following collection :

A = {(U, σU), U open , σU : U → L(TM) is a local section}.

We assume that the open sets U cover M . Let gUV denote the transition functions and
(ωU)ij the local connection forms. One can think of TM(−1) as the quotient space

 ∐
U∈A

U × Rn

 / ∼,

where (x, v1) ∈ U1 × Rn and (x, v2) ∈ U2 × Rn are equivalent if:

v2 = det(gU1U2(x))
1

n+1 gU1U2(x)−1v1, x ∈ U1 ∩ U2.

By construction, T itself can be described as
∐
U∈A

U×Rn+1/ ∼ for the equivalence relation:

(x, V1) ∈ U1 × Rn+1 ∼ (x, V2) ∈ U2 × Rn+1 ⇔ V2 = hU1U2(x)−1V1, x ∈ U1 ∩ U2,

where hU1U2 is obtained from gU1U2 using Equation (4.21). Now, the right-inverse we need
to construct can be described by first defining for each x ∈ U a linear map :

ϕUx : Rn −→ Rn+1

v 7−→

 ((ωU)ii)x(v)
v

 .
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For each U ∈ A we set : ϕU : U × Rn → U × Rn+1 where ϕU(x, V1) = (x, ϕUx V1). The
change of chart rule for the connection forms implies that :

ϕVx ((det(gUV (x)))
1

n+1 gUV (x)−1v) = hUV (x)−1ϕUx (v),

which is sufficient to show that (ϕU) can be smoothly glued together and factor to a vector
bundle morphism TM(−1) → T .

According to this result a choice of connection ∇a in the projective class, enables us
to write sections of T – tractor fields – as columns: νa

ρ

 ,
where νa ∈ Γ(TM(−1)), ρ ∈ Γ(E(−1)). When we change connection according to ∇̂a =
∇a + Υa then we get a new description , ν̂a

ρ̂

 ,
related to the previous one by:  ν̂a = νa,

ρ̂ = ρ− Υaν
a.

(4.25)

Finally it will be convenient to identify the maps X and Z in Proposition 4.3.1 with
sections XA ∈ EA(1), Za

A ∈ EaA(−1); these maps are canonical as they do not depend on
a choice of connection. The non-canonical maps that split the sequence will be identified
with sections YA ∈ EA(−1) and WA

a ∈ EAa (1). Note that :

XAYA = 1, Za
AW

A
b = δab , Z

a
AX

A = 0, WA
a YA = 0.

In this notation, one has:  νa

ρ

 = ρXA + νaWA
a .
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4.3.2 Change of connection

Although tractors have an invariant meaning, in practice, to work with them, we
will often choose a connection and split the short exact sequence. In this context, it
is important to relate various non-invariant quantities, such as curvature or covariant
derivatives, between two projectively equivalent affine connections, ∇ and ∇̂. Recall that
we write ∇̂ = ∇ + Υ, Υ ∈ Γ(T ∗M), when for any vector fields η, ξ:

∇̂ξη = ∇ξη + Υ(η)ξ + Υ(ξ)η.

As we have previously remarked in Equation (4.11), this implies that the connection forms
are related by :

ω̂ij = ωij + Υ(ej)ωi + Υδij. (4.11 revisited)

We can deduce from this the change in covariant derivative of any section of any as-
sociated vector bundle to the frame bundle L(TM), simply by applying the induced Lie
algebra morphism to (4.11) in order to determine the local connection forms. For instance,
projective densities of weight ω correspond to the representation ρ : A 7→ | detA|

ω
n+1 , the

induced Lie algebra morphism is ρ∗ : M 7→ ω
n+1tr(M). Hence, for any density σ of projec-

tive weight ω,

∇̂aσ = ∇aσ + ω

n+ 1
(
Υ(ej)ωja + nΥa)

)
σ = ∇aσ + ωΥaσ.

Similarly, for one forms µa, which correspond to the contragredient representation A 7→
tA−1, the corresponding Lie algebra morphism is : M 7→ −tM and we find that :

∇̂bµa = ∇bµa − Υaµb − Υbµa.

We move now to curvature. Generally, the Riemann tensor of any torsion-free affine
connection admits a unique decomposition as :

R c
ab d = W c

ab d + 2δc[aPb]d + βabδ
c
d, (4.26)

where : W c
ab d is trace-free and βab is antisymmetric. Taking traces of the above expression
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4.3. Projective tractors and their calculus

βab and Pab are easily shown to be related to the Ricci tensor Rbd = R a
ab d: (n− 1)Pab = Rab + βab,

βab = − 2
n+1R[ab].

(4.27)

We refer to W c
ab d as the projective Weyl tensor and to Pab as the projective Schouten ten-

sor. The following lemma describes how these quantities are related between two torsion-
free projectively equivalent affine connections :

Lemma 4.3.1. Let ∇̂ = ∇ + Υ then :

— Ŵ c
ab d = W c

ab d ,

— P̂ab = Pab − ∇aΥb + ΥaΥb,

— β̂ab = βab + 2∇[aΥb].

4.3.3 Special connections

In projective geometry, densities (cf. Definition 1.4.1) play an important role. As we
have previously remarked, for some equations, like the geodesic equation [GST20] or the
Killing equation (Equation (4.1)), considering weighted tensors, i.e. sections of B ⊗ E(ω)
for some tensor bundle B and some weight ω ∈ R∗, as opposed to usual tensors, can make
the equation projectively invariant. Densities also appear naturally in the splitting of the
tractor bundle in Proposition 4.3.1. We discuss here a further application : generalising
the notion of scale, naturally present in conformal geometry.

A connection ∇ in a projective class p is said to be special if it preserves a nowhere
vanishing density σ. Such a density is unique up to a constant factor and will be said to
be the scale determined by ∇. Although all connections are not special, there is always
a special connection in any projective class, as given any nowhere vanishing density σ ∈
Γ(E(ω)) and ∇ ∈ p, the connection ∇̂ = ∇ − 1

ω
σ−1∇aσ preserves σ, i.e. ∇̂aσ = 0.

Correspondingly, ∇̂ is said to be the scale determined by σ.
Special connections have useful properties, particularly with regards to curvature. We

note first that the projective density bundles are flat, indeed, if ∇ preserves a nowhere
vanishing density σ ∈ Γ(E(ω)), then any other such section ρ can be expressed as ρ = fσ

for some smooth function f , thus :

(∇a∇b − ∇b∇a)ρ = ((∇a∇b − ∇b∇a)f)σ = 0,
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since we work with torsion-free connections. This has consequences on the Riemann tensor,
as if we recall the decomposition :

R c
ab d = W c

ab d + 2δc[aPb]d + βabδ
c
d,

then, one can show that for any ω ∈ R∗ and any section ρ ∈ Γ(E(ω)) :

(∇a∇b − ∇b∇a)ρ = ωβabρ. (4.28)

We thus conclude that for special connections: βab = − 2
n+1R[ab] = 0. This implies that the

Ricci and Schouten tensors are both symmetric, and that all the density bundles are flat.
For future reference, we summarise this in:

Lemma 4.3.2. If ∇ is a special connection, then the corresponding Ricci and Schouten
tensors are symmetric and all the density bundles are flat.

4.3.4 The Tractor Connection

The local connection forms (Equation (4.20)) of the Cartan connection on P induce
a principal connection α on Q. Adapting our construction in Paragraph 1.3.4, α, in turn,
according to the procedure described in Paragraph 1.4.3, induces an affine connection ∇T

– the tractor connection – on the vector bundle T and, a fortiori, on its tensor algebra.
Choosing a connection in the projective class and identifying T

∇∼= E(−1) ⊕TM(−1), the
tractor connection can be shown to act as follows :

Proposition 4.3.2. Let ∇ ∈ p. In terms of the isomorphism T
∇∼= E(−1) ⊕ TM(−1),

the connection ∇T acts on the tractor T ∇=
 νa

ρ

 according to the equation :

∇T
b

 νa

ρ

 =
 ∇bν

a + δab ρ

∇bρ− Pbaν
a

 . (4.29)

In the above, Pab is the projective Schouten tensor defined in Section 4.3.2. The notation:

T
∇=
 νa

ρ

 should be understood to mean that the column vector on the right-hand side

corresponds to the components of the tractor T , after splitting T with ∇.
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After a choice of connection ∇ ∈ p, one can equip any tensor bundle :

⊗kT ⊗l T ∗ ⊗p TM ⊗q T ∗M ⊗ E(ω),

with a natural connection by mixing ∇T and ∇ 16, by abuse of notation, we will call this
connection ∇. Doing this enables us to summarise the action of ∇T quite succinctly in
terms of the splitting tractors XA, Za

A,W
A
a , YA :



∇aYA = PabZ
b
A,

∇aZ
b
A = −δbaYA,

∇aX
A = WA

a ,

∇aW
A
c = −PacXA.

(4.30)

Tractor curvature

It will be convenient to have at our disposal the expression of the tractor curvature
tensor Ω C

ab D in a splitting determined by a connection ∇ ∈ p. It is a short computation
that we carry out here to illustrate working with the splitting tractors introduced in
Section 4.3.4. Let us work with a fixed connection ∇ ∈ p, and observe that any (1, 1)-
tractor LCD can be decomposed as :

LCD = fXCYD + µdX
CZd

D + vcWA
c YD + λcdW

C
c Z

d
D, (4.31)

for f ∈ C∞(M), v ∈ Γ(T ∗M), µ ∈ Γ(TM), λ ∈ End(TM); the components are not
weighted. In order to determine the components, we only need to calculate the action of
Ω C
ab D on an arbitrary tractor TD = ρXD + νbWB

b . By definition :

Ω C
ab DT

D = 2∇[a∇b]T
C ,

16. we impose the Leibniz rule on simple tensors.
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let us now evaluate the right-hand side, using Equation (4.30) :

∇a∇bT
C = ∇a

∇bρX
C + ρ∇bX

C︸ ︷︷ ︸
WC

b

+∇bν
cWC

c + νc ∇bW
C
c︸ ︷︷ ︸

−PbcXC

 ,
= ∇a

(
(∇bρ− Pbcν

c)XC) + (∇bν
c + ρδcb)WC

c

)
,

= (∇a∇bρ− (∇aPbc)νc − 2P(a|c|∇b)ν
c − ρPab)XC

+ (2δc(a∇b)ρ+ ∇a∇bν
c − Pbdν

dδca)WC
c .

Thus, using Equation (4.28) and the fact that ρ has weight −1, we find :

2∇[a∇b]T
C = (2∇[a∇b]ρ− Yabdν

d − 2ρP[ab])XC + (2∇[a∇b]ν
c − 2δ c

(aPb)dν
d)WC

c ,

= −YabdνdXC + (R c
ab dν

d − βabν
c − 2δ c

(aPb)dν
d)WC

c ,

= −YabdνdXC + (W c
ab dν

d)WC
c .

In the above, we have introduced the projective Cotton tensor Yabc = 2∇[aPb]c, and, in
the second equation we have used the fact that : 2P[ab] = −βab.

Applying TD to Equation (4.31), one can then identify the components of the tractor
curvature that we find to be, very simply :

Ω C
ab D

∇= −YabdXCZd
D +W c

ab dW
C
c Z

d
D. (4.32)

Of course, the simplicity of the curvature tensor is a direct consequence of the choices
made in Section 4.2.4.

4.4 Projective Compactifications

We come now to the notion of projective compactifications. In Paragraph 4.2.3 we
have shown that to any pseudo-Riemannian (M, g) with Levi-Civita connection ∇, or,
more generally, any smooth manifold equipped with a torsion-free affine connection, one
can ascribe a Cartan projective structure whose projective geodesics are precisely the
unparametrised geodesics of ∇. The structure is unique, under the condition that we
require that the restrictions described by Paragraph 4.2.4 are satisfied.

The question underlying the ideas of projective compactification can be expressed as
follows: let M = M ∪ ∂M be a manifold with boundary, whose interior, M , is equipped
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4.4. Projective Compactifications

with a pseudo-Riemannian structure that does not extend 17 to its boundary ∂M , is it
possible that the associated projective structure extends nevertheless to ∂M and, if so,
what can be said of the geometry of ∂M? Our starting point will be the following definition
of [ČGM14; ČG14]:

Definition 4.4.1. Let M̄ = M∪∂M be a smooth manifold with boundary, whose interior
is M , and let ∇ be an affine connection on M . A boundary defining function is a map ρ

that satisfies :

1. Z(ρ) = {x ∈ M̄, ρ(x) = 0} = ∂M ,

2. dρ ̸= 0 on ∂M .

We will say that ∇ is projectively compact of order α ∈ R∗
+ if for every point x0 ∈ ∂M ,

one can find a neighbourhood U of x0 in M̄ and a boundary defining function ρ such that
the connection 18 on U ∩M :

∇̂ = ∇ + dρ
αρ
, (4.33)

has a smooth extension to the boundary, i.e. for instance, the local connection forms of
∇̂, defined on U ∩M , in any frame (ei) on U that is smooth up to the boundary, extend
to ∂M .

The definition is independent of the choice of defining function ρ, as any other defining
function on U can be written ρ̃ = ekρ and in this case dρ̃ = ρ̃dk+ ekdρ ∝ dρ on U ∩ ∂M .

On the other hand, the parameter α, cannot be removed. This is clearer if we introduce
the notion of boundary defining densities :

Definition 4.4.2. A boundary defining density is a global section of σ ∈ E(ω) for a
fixed weight ω ∈ R∗

+ vanishing exactly on ∂M and such that its expression in any local
trivialisation on a neighbourhood of a boundary point x0 ∈ ∂M is a boundary defining
function.

The parameter ω is fixed : suppose that σ ∈ E(ω), σ̂ ∈ E(ω′) are two defining densities
such that ω ≤ ω′. Let τ be a density of weight ω that is non-vanishing on a neighbourhood
U of a boundary point x0 ∈ ∂M , and write σ = ρτ on M ∩ U , ρ is therefore a boundary
defining function. Since σω′/ω is also non-vanishing on M∩U , it follows that σ̂ = efσω

′/ω =

17. For instance, because it is geodesically complete
18. cf. Proposition 4.2.1.
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efρω
′/ωτω

′/ω. τω′/ω is also non-vanishing on U , so we conclude that efρω′/ω is a boundary
defining function, therefore :

d(efρω′/ω) = efρω
′/ωdf + ρω

′/ω−1dρef ̸= 0 on ∂M,

so ω′ = ω.
The following lemma relates boundary defining densities and projectively compact

connections of order α:

Lemma 4.4.1 ( [ČG14, Proposition 2.3 (ii)] ). Let M̄ be a manifold with boundary
equipped with a projective structure [∇] on the interior M that extends to the bound-
ary ∂M . Suppose that σ ∈ E(α) is a boundary defining density and let ∇̂ be the scale
determined by σ on M , then: ∇̂ is projectively compact of order α.

The cases covered the most in examples and in the literature are α ∈ {1, 2}, this is
because there are well understood model cases. We also quote the following completeness
result:

Proposition 4.4.1 ( [ČG14, Proposition 2.4] ). Let ∇ be an affine connection on M
which is projectively compact of order α ≤ 2. Assume that γ is a projective geodesic that
reaches x0 ∈ ∂M with tangent vector transverse to ∂M . In this case, one can find an affine
parametrisation c : [0,∞[→ M̄ (with respect to ∇) of part of γ such that c([0,∞[) ⊂ M

and lim
t→+∞

c(t) = x0.

In the next paragraph, we will study in detail the case of Minkowski spacetime, which
we will find to be projectively compact of order 1. We will also explain how its metric
structure is encoded projectively in a parallel 2-tractor and that its projective infinity
inherits a metric projective structure.

4.4.1 Affine space

It is no surprise that the projective compactification of affine space An and, by exten-
sion, that of Minkowski spacetime, involves the central projection of Rn+1. We will first
look at this using the language of Paragraph 4.2.3 : identify An to Rn with its canonical
affine structure, let (e1, . . . , en) be the canonical basis and (ωi) = (dxi) the dual basis;
they are all parallel with respect to the canonical affine connection (which corresponds
exactly to the Maurer-Cartan form of the affine group). Thomas’ projective invariant Π

204



4.4. Projective Compactifications

(cf. Equation (4.13)), that is globally defined, vanishes and the (local) normal Cartan
connection is nothing more than :  0 0

ωi 0

 .
This is identical to the expression of the Maurer-Cartan form of the (oriented) projective
group in an affine chart that we gave in Equation (4.6)! So we recover the expected result
by reasoning locally.

One can also interpret this globally in terms of tractors. The first point we make
towards this is that the tractor bundle T on the projective sphere is trivial. Indeed, unlike
the H-principal bundle (P = SLn+1(R), π : SLn+1(R) → SLn+1(R)/H), the associated
bundle Q = P ×H SLn+1(R) has a canonical global section : pH 7→ [p, p−1] furnishing an
inverse to the bundle map :

P ×H G −→ SLn+1(R)/H × SLn+1(R)
[p, g] 7−→ (π(p), pg).

In the above, we view elements of P ×H G as equivalence classes of pairs (p, g) ∈
SLn+1(R) × SLn+1(R). The map is well-defined as for any h ∈ H:

π(ph) = π(p)π(h) = π(p) and (ph)(gh)−1 = phh−1g = pg.

Additionally, the Maurer-Cartan form of SLn+1(R) induces the trivial connection on
SLn+1(R)/H × SLn+1(R), as can be seen by examining the local connection forms. Since
Q is the frame bundle of the tractor bundle, it follows that : T = Sn × Rn+1. We can
therefore view parallel tractors on the projective sphere as constant vectors of Rn+1.

Exploiting its definition as a quotient space, other geometric quantities on the projec-
tive sphere have similar interpretations in terms of Rn+1. For instance, functions on Sn

are in one-to-one correspondence with functions on Rn+1 \ {0} that are invariant under
the natural action of R∗

+ on Rn+1, i.e. f(tx) = f(x) for all x ∈ Rn+1 and any t ∈ R∗
+;

densities of weight ω can be identified with ω-homogenous functions on Rn+1 \ {0}, i.e.
f(tx) = tωf(x), x ∈ Rn+1, t ∈ R∗

+. This last identification follows from the fact that the
frame bundle of densities of weight 1 can be identified with Rn+1 \ {0}, for instance as
follows :

Rn+1 \ {0} −→ Sn × R∗
+

(x1, . . . , xn+1) 7−→ ([x1, . . . , xn+1], |x1| + · · · + |xn+1|).
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In a similar vein, the map X in the short exact sequence (4.24) of Proposition 4.3.1,
can be thought of as the homogenous coordinates of a point on Sn. Finally, Z can be
identified using the usual interpretation of vector fields as differential operators : it is
the map that restricts a differential operator v on Rn+1 \ {0} to the space of smooth
R∗

+-invariant functions. However, the result of v is not a vector field on Sn. Instead, v(f)
is a homogenous function on Rn+1 \ {0} of weight −1, hence we have a weighted vector
field with weight −1.

Consider now the hyperplane xn+1 = −1 in Rn+1. In order for the canonical action of
SLn+1(R) on the projective sphere to induce, via central projection, a group action on the
plane, we must reduce the group by demanding that the co-vector I =

(
0 · · · 0 1

)
be preserved. This is tantamount to introducing a parallel co-tractor IA on the projective
sphere. The elements of the subgroup of SLn+1(R) that preserves I have the form :

 A b

0 1

 , A ∈ SLn(R), b ∈ Rn;

so it is easily recognised to be the affine group, and it acts as such on the hyperplane. The
projective compactification of affine space can therefore be understood to be obtained
directly from the projective sphere by choosing a parallel cotractor IA and demanding
that it be preserved by the structure. This splits the projective sphere into three orbits,
two of which can be identified with the hyperplane, (points with homogenous coordi-
nates [x1, . . . , xn,±1]) and the third, formed by points with homogeneous coordinates
[x1, . . . , xn, 0], is what we will identify as the boundary at infinity. Note that the weight
one density, σ = XAIA, corresponding to the homogeneous function of weight 1 given by
the (n+ 1)-th homogeneous coordinate, xn+1, is a defining density for the boundary.

4.4.2 Minkowski spacetime

To introduce additional structure on the hyperplane, for instance a pseudo-Euclidean
structure, one should reduce the projective group SLn+1(R) further by requiring that a
constant metric on (Rn+1)∗, H, be preserved. Let :

H =


Ip 0 0
0 −Iq 0
0 0 0

 ,
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and note thatHABIA = 0. The subgroup that preservesH and I is given by : Rn ⋊SO(p, q)
that we identify with the matrices : A b

0 1

 , A ∈ SO(p, q), b ∈ Rn.

Studying the orbits of the action of this group on the projective sphere, one observes that,
there are again two orbits that can be identified with pseudo-Euclidean space, however, in
addition, the boundary at infinity - i.e. points with homogenous coordinates [x1, . . . , xn, 0]
- splits into orbits classified by the sign of H(x, x), where x is the vector in Rn+1 formed by
the homogenous coordinates. In the specific case of a Lorentzian signature (−,+, . . . ,+),
the 3-orbits can be interpreted as timelike (H(x, x) < 0), spacelike, (H(x, x) > 0) and
null infinity (H(x, x) = 0).

Once more, σ = IAX
A is a weight one boundary defining density, therefore, (d + 1)-

dimensional Minkowski spacetime is projectively compact of order α = 1. The bilinear
form H is to be identified with a parallel 2-tractor on the projective sphere. The structure
described here is, in fact, the generic model for projectively compact metrics of order 1;
this is explained in [FG18].

Up to now, we have viewed things from the point of view of an ambient projective
sphere, producing a projective compactification of pseudo-Euclidean space by embedding
it directly into the n-sphere. Nevertheless, one can argue that it is more natural to adopt
the opposite point of view, and attempt to construct a compactification from the inside
out.

For definiteness, let us restrict now our discussion to n = d+1 dimensional Minkowski
spacetime, that is to say : Rn = R1+d with its usual Cartesian coordinates X0, . . . , Xd and
the usual (+,−, . . . ,−) Minkowski metric. Generic coordinates of points in Rn+1 = Rd+2

shall be written (x0, . . . , xd+1) and homogenous coordinates in P+(Rn+1) = P+(Rd+2),
[x0, . . . , xd+1].

Trivialising the density bundle with various densities enables us to deduce boundary
defining functions that can be used to define local coordinates charts well-adapted to the
projective compactification. For instance, consider the usual Euclidean norm || · ||2; it
defines a homogenous function of weight 1 on Rd+2, hence a projective density of weight
1 on Sd+1. As before, the boundary defining density σ = XAIA corresponds to the ho-
mogenous function given by the last coordinate in xd+1 in Rd+2. In the local affine chart
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U−
d+1

∼= Rd+1 of Sd+1 :
xd+1 = ρ1|| · ||2,

with :

ρ1 :
U+
d+1

∼= Rd+1 −→ R
(X0, . . . , Xd) 7−→ −1√

1+X2
0 +···+X2

d

.

Another interesting example is the local trivialisation given by the homogenous func-
tion :

f(x0, . . . , xd+1) = −
√

|x2
0 − x2

2 − · · · − x2
d|,

on points such that xd+1 < 0 and x2
0 − x2

2 − · · · − x2
d ̸= 0. Writing xd+1 = ρf , we find:

ρ(X0, . . . , Xd) = 1√
|X2

0 −X2
2 − · · · −X2

d |
. (4.34)

The function ρ can be used to construct future timelike infinity directly. Indeed, the
surfaces ρ = c furnish a foliation of the interior of the future light-cone S + represented
in Figure 4.2. In the coordinate chart (ρ, x̃1, . . . , x̃d) on S + defined by : x̃i = ρXi, which

-3 -2 -1 0 1 2 3
x

-3

-2

-1

0

1

2

3

t

Figure 4.2 – Foliation of the interior light-cone by hyperbolic sheets
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is adapted to this foliation, the usual Minkowski metric takes the form :

g = dρ2

ρ4 − 1
ρ2

∑
i,j

(
δij − x̃ix̃j

1 + |x̃|2

)
︸ ︷︷ ︸

ρ2gij

dx̃idx̃j, |x̃| =
d∑
i=1

x̃2
i . (4.35)

In fact, [ČG14, Theorem 2.6] shows that projective compactness of order 1 follows directly
from this expression; the compactification being obtained by appending the hypersurface
{ρ = 0}. In this simple case, it is nonetheless straightforward to verify this directly: the
coordinates (ρ, x̃1; . . . , x̃d) identify S + with ]0,+∞[×Rn, that is naturally viewed as an
open-subset of [0,+∞[×Rn. To prove projective compactness of order 1, it is necessary to
show that the connection ∇̂ = ∇+ dρ

ρ
, has a smooth extension to points where ρ = 0. The

associated coordinate basis ( ∂
∂ρ
, ( ∂
∂x̃i

)i∈J1,dK) on S +, has a natural extension to [0,∞[×Rd,
hence it is sufficient to calculate the local connection form in this local frame. First, those
of the Levi-Civita connection are :

ω0
0 = −2dρ

ρ
; ωi0 = −dx̃i

ρ
,

ω0
j = −ρdx̃j + ρx̃j

1 + |x̃|2
∑
k

x̃kdx̃k = ρ3∑
k

gjkdx̃k,

ωij = −x̃idx̃j + x̃ix̃j
1 + |x̃|2

∑
k

x̃kdx̃k − δij
dρ
ρ

= x̃iρ
2∑

k

gjkdx̃k − δij
dρ
ρ
.

(4.36)

Those of the connection ∇̂ = ∇ + dρ
ρ

are obtained by applying Equation (4.11):

ω̂0
0 = ω̂i0 = 0,

ω̂0
j = ω0

j,

ω̂ij = x̃iρ
2∑

k

gjkdx̃k,
(4.37)

and clearly have smooth extensions to points where ρ vanishes, which proves projective
compactness of order 1.

Using Equation (4.35), one easily identifies a metric on the boundary :

h = ρ2
(
g − dρ2

ρ4

)
=
∑
i,j

(
δij − x̃ix̃j

1 + |x̃|2

)
dx̃idx̃j.

Although this is not obvious from the outset, one can show that ∇̂ restricted to the
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boundary is the Levi-Civita connection for h.
Minor modifications of ρ can be used to construct past-timelike infinity and spacelike

infinity by a similar coordinate based method. On the other hand, projective null infinity
requires a slightly different treatment. It can in fact be obtained by projectively compact-
ifying the incomplete spacelike and/or timelike projective infinity, which is projectively
compact of order 2.

4.4.3 de-Sitter spacetime

Another interesting example is that of de-Sitter space, a Minkowski signature analogue
of the Euclidean sphere. In 4 dimensions, it is the hypersurface {η(x, x) = k2, x ∈ R5} in
R5 equipped with the standard (−,+,+,+,+) signature metric η. As with the sphere, the
parameter k ∈ R is a scaling of curvature and has no importance for us, we will henceforth
set k = 1. The geometry can be described as Rψ × S3 with the metric :

g = −dψ2 + cosh2 ψdσ3, (4.38)

where dσ3 is the usual Euclidean metric of the unit 3-sphere in R4. A coordinate based
approach to the compactification is to consider, for instance, the scalar field ρ = 1

2 cosh2 ψ
.

In this case:
g = −dρ2

4ρ2 + 1
2ρ

(
− dρ2

1 − 2ρ + dσ3
)
.

Since h = − dρ2

1−2ρ + dσ3 extends smoothly to s = 0, [ČG14, Theorem 2.6] allows us
to conclude immediately that de-Sitter space is projectively compact of order 2. This
fact can of course be verified directly upon inspection of the connection forms given in
Appendix F.

A more geometric view of the compactification is to first recall that de-Sitter space
is the homogeneous space SO(4, 1)/SO(3, 1). Thanks to its embedding in R5, it is easily
identified with a subset of the projective sphere S4 via central projection. Consider now
the projective sphere with its canonical projective structure and introduce the standard
signature (4, 1) metric HAB on R5∗, i.e. a parallel 2-tractor on S4. Demanding that the
structure preserve the metric results in the reduction of SL5(R) to SO(4, 1) and enables
us to retrieve the usual geometric structure on de-Sitter space. Within the projective
sphere, de Sitter corresponds to the set of points with homogenous coordinates X such
that the weight 2 density σ = HABX

AXB > 0. This density is also a natural defining
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density for the boundary and, as with Minkowski space, trivialising it with respect to other
non-vanishing 2-densities on the projective sphere yields boundary defining functions.

The defining function used above in the coordinate based approach comes from trivi-
alising σ with the 2-density corresponding to the weight 2 homogenous function on R5 :
X2

1 + · · · +X2
4 , one has :

σ = −X2
0 +X2

1 +X2
3 +X2

4 =

 1 − X2
0

X2
1 +X2

3 +X2
4︸ ︷︷ ︸

function defined on the projective sphere

 (X2
1 + · · · +X2

4 ).

In the curved coordinate chart (ψ, ϑ), ψ ∈ R, ϑ ∈ S3 this function is exactly 1−tanh2 ψ =
1

cosh2 ψ
; had we chosen to trivialise with the 2-density || · ||22 we would have found the

boundary defining function ρ̃ = 1
cosh(2ψ) .

A striking difference with the compactification of Minkowski spacetime is that the
action of SO(4, 1) on the projective sphere does not restrict to an action on the boundary
σ = 0 of de-Sitter space and, consequently, we do not get a projective structure on the
boundary, instead it inherits a conformal structure.

The above examples are model cases for the local geometry of solutions to the so-called
Metrisability equation. In both cases, a symmetric bilinear form on the cotractor manifold
HAB plays an important role, and will also be an important tool in the lifting of equations
on the base to the tractor bundle. In the next section, the reader will find a brief review of
the theory of the Metrisability equation establishing the correspondence between solutions
to the Metrisability equation and symmetric bilinear forms on the cotractor bundle.
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4.5 A brief primer on the Metrisability equation

4.5.1 General theory

In [EM08], the presence of a connection within a given projective class p on a projective
manifold (M,p) was shown to be governed by the existence of solutions to the following
(overdetermined) projectively invariant equation with unknown σab ∈ Γ(E(−2)):

∇cσ
ab − 2

n+ 1∇dσ
d(aδb)c = 0. (ME)

Equation (ME) states simply that the trace-free part of ∇cσ
ab must vanish, and its

projective invariance follows directly from this observation since if ∇̂ = ∇ + Υ :

∇̂cσ
ab = ∇cσ

ab + Υdσ
dbδac + Υdσ

adδbc = ∇cσ
ab + 2Υdσ

d(aδb)c︸ ︷︷ ︸
trace term

.

Hence, the trace-free parts are identical. If σab is a non-degenerate solution to this equa-
tion, then we define:

σ = ε2
a1...anb1...bn

σa1b1 . . . σanbn := detσab.

Even on non-orientable manifolds M the bundle ΛnTM ⊗ ΛnTM is canonically oriented
and we denote by ε2

a1...anb1...bn
the canonical section that identifies ΛnTM ⊗ ΛnTM to the

density bundle E(2n + 2). In case there is an orientation, we can instead use the dual of
the volume form ωa1...an and identify the bundles using ωa1...anωb1...bn . In any case, σ is a
weight two density, and, if σab is non-degenerate, σ is nowhere vanishing so one can define
a metric, g, by: gab = σ−1σab. The scale determined by σ, ∇σ, can then be shown to be
the Levi-Civita connection for g.

It turns out that the solutions to (ME) are in one-to-one correspondence with 2-tractors
HAB that satisfy the equation :

∇cH
AB + 2

n
X(AW

B)
cE FH

EF = 0. (ME2)

This result can be obtained by prolongation 19 of (ME), which consists, briefly, in adding
variables in order to obtain a closed system. Here, we recall the explanation given in [ČGM14]

19. [Bra+06]
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4.5. A brief primer on the Metrisability equation

using the projective tractor calculus. The first remark is that there is a canonical projec-
tively invariant operator : T ∗M −→ End(T ) that acts on 1-forms as :

ub 7→ XAZb
Bub.

This induces an operator ∂∗ : ΛkT ∗M ⊗ S2T −→ Λk−1T ∗M ⊗ S2T that acts as :

HAB
b1...bk

7→ X(AH
B)C
cb2...bk

Zc
C .

To understand how this operators acts in the column vector notation, we note first
that after splitting the sequence (4.24) with a choice of connection ∇, an arbitrary section
of S2T can be written :

HAB = ζabWA
a W

B
b + 2λbX(AW

B)
b + τXAXB,

where ζ ∈ Γ(S2TM(−2)), λ ∈ Γ(TM(−2)),τ ∈ Γ(E(−2)). Therefore, if we write :

HAB
b1...bk

= ζabb1...bk
WA
a W

b
B + 2λbb1...bk

X(AW
B)
b + τb1...bk

XAXB,

it follows that:
(∂∗H)ABb2...bk

= X(AH
B)C
cb2...bk

Zc
C

= ζcbcb2...bk
X(AW

B)
b + λccb2...bk

XAXB.
(4.39)

This enables us to verify that, in fact : ∂∗ ◦ ∂∗ = 0, and hence that we have a chain
complex. It turns out that in addition to this we have so-called splitting operators:

Theorem 4.5.1. Let ζab ∈ Γ(S2TM(−2)), then there is a unique section L(ζ) of S2T
that satisfies:

— Za
AZ

b
BL(ζ)AB = ζab,

— ∂∗(∇T L(ζ)) = 0.

If ∇ ∈ p then we have :

L(ζ) ∇= ζabWA
a W

B
b − 2∇aζ

ab

n+ 1X
(AW

B)
b + Pabζ

ab(n+ 1) + ∇a∇bζ
ab

n(n+ 1) XAXB. (4.40)

Furthermore :
Za
AZ

b
B∇cL(ζ)AB = ∇cζ

ab − 2
n+ 1∇dζ

d(aδb)c .
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Chapter 4 – Projective differential geometry and asymptotic analysis

We seek now to prove the equivalence between solutions to (ME2) and those of (ME).
This proof is already available in [ČGM14], but it is an interesting exercise to carry out
these steps here as it helps to apprehend the articulations between the different notions
of curvature, as well as the roles they each play in the projective structure. First let us
observe that (ME2) can in fact be rewritten:

∇cH
AB = − 2

n
∂∗(Ω (A

ce FH
B)F ).

Hence, any HAB satisfying (ME2), satisfies ∂∗∇cH
AB = 0, which implies that HAB = L(ζ)

where ζab = Za
AZ

b
BH

AB. Furthermore, since it is in the image of ∂∗, Za
AZ

b
B∇cH

AB = 0.
Therefore, any HAB that satisfies (ME2) is L(ζ) for a solution ζ of the metrisability
equation. The proof of the converse is more involved. Let us assume that ζ is a solution
to (ME) and denote by HAB the tractor L(ζ). Let ∇ ∈ p and rewrite (4.40):

HAB ∇=


ζab

λb

τ

 =


ζab

−∇aζab

n+1
Pabζ

ab

n
+ ∇a∇bζ

ab

n(n+1)

 .

A simple calculation leads to:

∇cH
AB ∇=


∇cζ

ab + 2λ(bδa)
c

∇cλ
b − ζabPca + τδbc

∇cτ − 2Pcbλb

 .

If ζab is solution to the metrisability equation then the top slot cancels. Let us now
calculate ∇c∇dζ

ad :

∇c∇dζ
ad = ∇d∇cζ

ad +R a
cd fζ

df +R d
cd fζ

af − 2βcdζad,

= 2
n+ 1∇d∇fζ

f(aδd)
c +R a

cd fζ
df − (Rcf + βcf )︸ ︷︷ ︸

(n−1)Pcf

ζaf − βcfζ
af ,

= ∇c∇fζ
fa

n+ 1 + ∇d∇fζ
fdδac

n+ 1 +W a
cd fζ

df + 2δa[cPd]fζ
df − (n− 1)Pcfζaf ,

= ∇c∇fζ
fa

n+ 1 + ∇d∇fζ
fdδac

n+ 1 +W a
cd fζ

df + δacPdfζ
df − nPcfζ

af .
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Therefore:

n

n+ 1∇c∇dζ
ad = ∇d∇fζ

fdδac
n+ 1 +W a

cd fζ
df + δacPdfζ

df − nPcfζ
af ,

= n(τδac − Pcfζ
fa) +W a

cd fζ
df .

Thus, after rearrangement :

n(∇cλ
a − Pcfζ

fa + τδac ) = −W a
cd fζ

df .

We now aim to perform a similar calculation for ∇cτ = ∇c

(
Pabζ

ab

n
+ ∇a∇bζ

ab

n(n+1)

)
. To begin

with :
n(∇cτ) = (∇cPab)ζab + Pab∇cζ

ab + ∇c∇a∇bζ
ab

n+ 1 ,

= (∇cPab)ζab − 2Pabλ(aδb)c + ∇c∇a∇bζ
ab

n+ 1 ,

= (∇cPab)ζab + ∇c∇a∇bζ
ab

n+ 1 − Pacλ
a︸ ︷︷ ︸

Pcaλa−βacλa

−Pcbλb,

= (∇cPab)ζab + ∇c∇a∇bζ
ab

n+ 1 − 2Pcbλb + βacλ
a.

Let us focus now on: ∇c∇a∇bζ
ab:

∇c∇a∇bζ
ab = ∇a∇c ∇bζ

ab︸ ︷︷ ︸
−(n+1)λa

+R a
ca f∇bζ

fb +R b
ca f∇bζ

af −R f
ca b∇fζ

ab − 2βca∇bζ
ab,

= −(n+ 1)∇a∇cλ
a + (n+ 1)Rcfλ

f + 2(n+ 1)βcaλa.

Therefore:
∇c∇a∇bζ

ab

n+ 1 = −∇a∇cλ
a + (n− 1)Pcfλf + βcfλ

f .

From our previous computation :

∇a∇cλ
a = ∇a

(
Pcfζ

fa − τδac − 1
n
W a
cd fζ

fd
)

= −∇cτ + (∇aPcf )ζfa − (n+ 1)Pcfλf − 1
n
W a
cd f∇aζ

fd − 1
n

∇aW
a

cd fζ
fd.

We appeal now to (E.1) which shows that :

∇aW
a

cd fζ
fd = (n− 2)Ycdfζfd,
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thus :

∇a∇cλ
a = −∇cτ + (∇aPcf )ζfa − (n+ 1)Pcfλf − 1

n
W a
cd f∇aζ

fd − n− 2
n

Ycdfζ
fd,

= −∇cτ + (∇aPcf )ζfa − (n+ 1)Pcfλf + 2
n
W a
cd fλ

(fδd)
a︸ ︷︷ ︸

= 0 since W is tracefree

−n− 2
n

Ycdfζ
fd,

= −∇cτ + (∇aPcf )ζfa − (n+ 1)Pcfλf − n− 2
n

Ycdfζ
fd.

Overall :

∇c∇a∇bζ
ab

n+ 1 = ∇cτ − (∇aPcf )ζfa + 2nPcfλf + n− 2
n

Ycdfζ
df + βcfλ

f .

Therefore:

(n− 1)(∇cτ − 2Pcbλb) = (∇cPab)ζab + n− 2
n

Ycdfζ
df − (∇aPcf )ζfa,

= 2n− 1
n

Ycdfζ
df .

Hence:
(∇cτ − 2Pcbλb) = 2

n
Ycdfζ

df .

Finally, we conclude that :

∇cH
AB ∇= 1

n


0

−W a
cd fζ

df

2Ycdfζdf

 .

Now, using Equation (4.32) we see that :

2Ω (A
ce FH

B)F = −2YcefζbfX(AW
B)
b + 2W a

ce fζ
bfWA

a W
B
b − 2λfYcefXAXB.

Hence, according to (4.39):

∂∗(2Ω (A
ce FH

B)F ) = −2ζefYcefXAXB + 2ζefW b
ce fX

(AW
B)
b

∇=


0

ζefW b
ce f

−2Ycefζef

 .

Which shows that Equation (ME2) is satisfied and proves the equivalence. Due to this
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4.5. A brief primer on the Metrisability equation

result, we will sometimes also refer to (ME2) as the metrisability equation.

4.5.2 Normal solutions

If we inspect the hypothesis of Theorem 4.5.1, we observe that there is a special class
of solutions to the metrisability equation: those ζ such that HAB = L(ζ) is parallel for
the tractor connection. They will be referred to as normal solutions, and it is shown
in [ČGM14] that they are intimately related to Einstein manifolds. Indeed, recall that:

HAB ∇=


ζab

λb

τ

 =


ζab

−∇aζab

n+1
Pabζ

ab

n
+ ∇a∇bζ

ab

n(n+1)

 , ∇cH
AB ∇=


∇cζ

ab + 2λ(bδa)
c

∇cλ
b − ζabPca + τδbc

∇cτ − 2Pcbλb

 .

In the scale ∇σ determined by σ = det ζab, which is the Levi-Civita connection of the
metric gab = σ−1ζab, away from where σ vanishes, λb = 0 and the condition ∇cH

AB = 0
implies that :

ζabPca = Pefζ
ef

n
δbc,

hence :
Pcd = Pefζ

ef

n
ζcd. (4.41)

Furthermore, since nτ = ζabPab and ∇cτ = 0, it follows that ζcd is Einstein.
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Chapter 4 – Projective differential geometry and asymptotic analysis

4.6 Projective Laplace operator and Boundary cal-
culus

4.6.1 The Thomas D-operator

We have now laid out the basic tools that we have at our disposal on projectively
compact pseudo-Riemannian manifolds and can at last proceed to discuss how one may
seek to use these new tools in the asymptotic analysis of second order partial differentiation
equations from Physics. The main idea is to construct a tractor version of the usual
differential operators, that can be used to write down a similar equation on the tractor
bundle. Equations obtained in this way are projectively invariant by construction and one
can hope that it is possible to extract asymptotic information from the version expressed
in the scale ∇̂ that extends smoothly to the boundary. A basic tool in the construction
of these projectively invariant operators is the Thomas D-operator:

Definition 4.6.1. Let F ◦ be an arbitrary section of a weighted tractor bundle 20 of weight
ω. In a given scale ∇, the projective Thomas D-operator is defined as :

DAF
◦ ∇= ωYAF

◦ + ∇aF
◦Za

A.

The definition is independent of the choice of scale since if ∇̂ = ∇ + Υ then : ∇̂aF =
∇aF + ωΥaF and ŶA = YA − ΥaZ

a
A, so :

ωYAF + Za
A∇aF = ωŶAF + (∇aF + ωΥaF )Za

A = ωŶAF + ∇̂aFZ
a
A.

We note here that the operator XADA
21 is the weight operator ω : F (ω) → F (ω)

defined on an arbitrary weighted tractor bundle F (ω) by : F 7→ ωF .
The Thomas D-operator is closely analogous to a covariant derivative with tractor

indices and satisfies, in particular, the Leibniz rule:

DA(F ◦G◦) = (DAF
◦)G◦ + F ◦(DAG

◦).

It is interesting to note that this was not the case for the conformal equivalent of the
Thomas D-operator. It holds here because the projective structure is, in some sense, first

20. ◦ denotes an arbitrary set of tractor indices.
21. XA is the canonical tractor.
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4.6. Projective Laplace operator and Boundary calculus

order whereas the conformal structure is second order : projective tractors are 1-jets and
conformal tractors, 2-jets.

4.6.2 A projective Laplace operator and its boundary calculus

First attempt

Our original interest in Laplace-type operators that can act on tractors arose from the
hope that they may provide a framework for the geometric interpretation of Hörmander’s
scattering result at timelike infinity for Klein-Gordon fields in Minkowski space-time dis-
cussed in the introduction. The Laplace operator gab∇a∇b is not, of course, projectively
invariant. However, much like in the conformal case, it can be made projectively invariant
by working with projective densities of arbitrary weight.

Consider a Lorentzian manifold (M, g) of dimension n and denote by [∇] the projec-
tive class of its Levi-Civita connection. If σ ∈ Γ(T ∗M(ω)), then observe that gab∇aσb

transforms under a change of connection ∇̂ = ∇ + Υ according to:

gab∇̂aσb = gab∇aσb + ωΥbσb − Υbσb − σb Υb

= gab∇aσb + (ω − 2)Υbσb.

It is therefore immediately invariant if ω = 2, however, we can avoid fixing the weight
(that we hope to identify with a mass term) if we consider instead an operator of the
form ∇a + ζa, where the form ζ depends on the connection in the class and transforms
according to:

ζ̂a = ζa − (ω − 2)Υa.

It is possible to construct such a co-vector from any non-degenerate symmetric tensor hab,
indeed, ζa = ω−2

n+3h
ac∇chab, is a suitable choice since:

hac∇̂chab = hac∇chab − 2hachabΥc − hachacΥb − Υah
achcb

= hac∇chab − 2Υb − nΥb − Υb

= hac∇chab − (n+ 3)Υb.

With any such choice of ζ, the quantity:

gab(∇̂a + ζa)σb,
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Chapter 4 – Projective differential geometry and asymptotic analysis

is projectively invariant. Studying similarly the transformation rule for ∇aτ we find that
for any τ ∈ E(ω), ξa = hac∇chab, h ∈ S2(T ∗M), non-degenerate:

gab
(

∇a + ω − 2
n+ 3 ξa

)(
∇b + ω

n+ 3ξb
)
τ,

is also projectively invariant. The operator can be extended to weighted tractors simply
by coupling with the tractor connection.

Since we already have a metric g at our disposal, it seems natural to set h = g in the
above. The resulting operator is a candidate for a D’Alembertian type operator, however,
in the Levi-Civita scale the term ξa vanishes and does not, therefore, provide a mass
term...

Restricting the problem to Minkowski spacetime, we can try to solve the mass issue
by exploiting some of the freedom left in the construction outlined above. Let ρ be the
boundary defining function defined by Equation (4.34) on the future region of the future
light cone of the origin of Minkowski spacetime. We note immediately that, with the
Levi-Civita connection:

□ρ = −(n− 3)ρ3, ∇aρ∇aρ = ρ4.

Set hab = f(ρ)gab, so that the new ξ̃a is given by:

ξ̃a = ξa + (f(ρ))−1f ′(ρ)∇aρ.

Studying the form of ∇aξ̃a and ξ̃aξa, it transpires that an interesting choice for f is
f(ρ) = e− α

ρ , for some α ∈ C. For such a choice, expressed in the Levi-Civita scale:

ξ̃a = α
∇aρ

ρ2 , ξ̃aξ̃a = α2, ∇aξ̃a = −α(n− 1)ρ,

so that, if we write: ℶτ = gab
(

∇a + ω − 2
n+ 3 ξ̃a

)(
∇b + ω

n+ 3 ξ̃b
)
τ , then in the Levi-Civita

scale:
ℶτ = gab∇a∇bτ − α(n− 1)ρωτ + 2(ω − 1)

n+ 3 gabξa∇bτ + (ω − 2)ωα2

(n+ 3)2 τ.

Setting ω = 1 rids us of the first order term and setting α = im(n + 3) we arrive, again
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in the Levi-Civita scale, at:

ℶτ + im(n− 1)ρτ = (□ +m2)τ.

This has apparently given us what we sought; but perhaps in a trivial way. Indeed, there is
no guarantee here that ℶ has an interesting extension to the boundary (or is defined there),
and, our development depends in a non-trivial way on the boundary defining function,
which is inherently dissatisfying. Finally, since τ is of weight 1, and Minkowski spacetime
is projectively compact of order 1, then τ = ϕσ, where σ ∈ E(1) is a boundary defining
density. Hence, if ϕ extends to the boundary, so does τ but with vanishing boundary value.
Working out the action of the operator on the component of τ expressed in a trivialisation
that is valid up to the boundary, we find unfortunately that our concerns are founded as it
has smooth coefficients that tend to 0 at the boundary and reduces there to multiplication
by m2.

A more natural operator

On a n-dimensional projective manifold (M,p) equipped with a solution HAB = L(ζ)
to the metrisability equation (ME2), D provides a natural candidate for a projectively
invariant Laplacian operator, namely :

∆T = HABDADB.

During my trip to Auckland University, A.R. Gover suggested to me that this operator
would likely play a key role and may be a more successful candidate. We also note that
it has already appeared in the literature [GS18]. Of course, the results in Section 4.5.1
corroborate this, given the geometric significance of HAB. This is also a closer analogue to
the operator « I ·D » in conformal tractor calculus [18, Chapter 3, §3.9] than the previous
attempt.

The analogy with the conformal case is in fact complete in the case where HAB is
non-degenerate. In the early stages of his on-going thesis work, Samuel Porath, a student
of R. Gover, developed a boundary calculus in this case, that is in all points analogous to
the results in [GW14]. In fact, the important point is that ∆T defined above is part of an
sl2 algebra.

Proposition 4.6.1 (S. Porath). Suppose (M, g) is projectively compact of order α = 2,
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HAB non-degenerate, and let:

— x be the operator of multiplication by a boundary defining density σ,

— y = − 1
σ−1I2 ∆T , with I2 = HABDAσDBσ,

— h = ω + d+2
2 .

Then x, y, h form an sl2-triple i.e.

[x, y] = h, [h, x] = 2x, [h, y] = −2y.

It is interesting to note that Proposition 4.6.1 is not specific to normal solutions to the
Metrisability equation. The consequence of this that interests to us, is that following
the same procedure as in [GW14], S. Porath developed a Boundary Calculus from which
follows a formal solution operator that we relate to the asymptotics of solutions, we will
discuss this in Section 4.6.4.

Let us begin our discussion here by studying how ∆T acts on weighted densities. Let
f ∈ Γ(E(ω)) and ∇ ∈ p, then:

DADBf
∇= (ω − 1)ωfYAYB + 2(ω − 1)∇bfY(AZ

b
B) + (∇a∇bf + ωPabf)Za

AZ
b
B.

Hence, writing HAB ∇= ζabWA
a W

B
b − 2∇aζab

n+1 X
(AW

B)
b +

(
Pabζ

ab

n
+ ∇a∇bζ

ab

n(n+1)

)
XAXB, we find

that:

∆T f
∇= ω(ω − 1)

(
Pabζ

ab

n
+ ∇a∇bζ

ab

n(n+ 1)

)
f + ζab(∇a∇bf + ωPabf) − 2ω − 1

n+ 1∇aζ
ab∇bf.

In the scale ∇ζ the expression reduces to :

∆T f
∇ζ= ω(ω + n− 1)Pabζab

n
f + ζab∇a∇bf. (4.42)

This indicates that in the case where the density Pabζ
ab is parallel for ∇ζ , ∆T is a pro-

jectively invariant generalisation of the Klein-Gordon operator, with the proviso that the
order-0 term be identified with the mass. Unfortunately, in the case of scalar-flat met-
rics like Minkowski spacetime, the term vanishes altogether and we have but a projective
wave operator. We will see that scalar-flatness is also an obstruction to our next develop-
ments, as well as Proposition 4.6.1. The above formulae generalise to the case where f is
a weighted tractor by coupling a connection on M with the tractor connection.
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Let us now restrict to the case in which our projective manifold is the projective
compactification M̄ of a connected oriented n = (1 + d)-dimensional Lorentzian manifold
(M, g). That is to say, we assume that:

Hypothesis A.

— M̄ is a manifold with boundary ∂M such that int M̄ = M ,

— M is a connected, oriented manifold equipped with a smooth Lorentzian metric g,

— The Levi-Civita connection ∇g of g does not extend smoothly to any point on the
boundary,

— The projective class [∇g] extends to the boundary.

Let ωg denote the volume density for g and set for α ∈ {1, 2}, σ = (ωg)− α
n+2 . Then

ζ = σ− 2
α g−1 is a solution to the metrisability equation (ME) on M , and gives rise to a

tractor HAB that is a solution of Equation (ME2), equally on M . Since Equation (ME2)
can be rewritten as ∇̃cH

AB = 0 for an obvious modification ∇̃ of the tractor connection,
we can observe that our assumptions imply that ∇̃ extends smoothly to the boundary
and, consequently, HAB can be extended by parallel transport to ∂M . Projecting onto
the invariant component, Za

AZ
b
BH

AB = ζab, shows that ζ itself extends smoothly to the
boundary, furthermore, its extension is degenerate on ∂M since if this was not the case
∇g would extend to the boundary. According to whether HAB is non-degenerate (α = 2)
or g is Ricci-flat (α = 1) we are now in one of the situations described in [FG18, Theorems
3.6 or 3.14] and σ is a boundary defining density in each case.

Consider now as in Proposition 4.6.1, x, the operator acting on weighted tractors that
multiplies by σ and define the weight α− 1 co-tractor IA = DAσ, then :

Lemma 4.6.1.
[x,∆T ] = −σ−1I2

α
(2ω + d+ α)

where: I2 = HABIAIB and ω = XADA is the weight operator.

Proof. In the scale ∇g, σ is parallel, so it commutes with ∇g. However, it does not com-
mute with the weight operator as it increases weight by α. Hence, if F is an arbitrary
tractor of weight ω then :

[x,∆T ]F = (ω(ω + d) − (ω + α)(ω + α + d)Pabζ
ab

d+ 1 σF.

Again, in the scale ∇g, IA = ασYA and I2 = α2σ2 Pabζ
ab

d+1 and the result ensues.
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If g is Ricci-flat (α = 1) then on M , Pab = 0 and I2 = 0. Furthermore, IA is parallel for
the tractor connection and extends naturally to M̄ , hence I2 also extends smoothly to 0
on M̄ . So [x,∆T ] = 0 in this case. On the other hand, if HAB is non-degenerate on M

(α = 2), the function σ−1I2 is non-vanishing on M̄ and, defining y = − 1
σ−1I2 ∆T , we have

reproduced Proposition 4.6.1.
We see here directly the unfortunate consequences of Ricci-flatness, Proposition 4.6.1

cannot hold in the case α = 1 because x and ∆T commute and generate a trivial sub-Lie
algebra.

4.6.3 Asymptotics of solutions to the Klein-Gordon equation in
de-Sitter spacetime

As mentioned above, in the non-degenerate case, the sl2-triple in Proposition 4.6.1 is
the basis of a so-called Boundary Calculus. This enables us to formally generate approx-
imate solutions to yf = 0 off the boundary. To study this, we first consider the specific
case of (1 + d)-dimensional de-Sitter spacetime and return to the notations introduced in
Section 4.4.3. Let σ ∈ E(2) be the defining density for the boundary constructed from the
volume form ωg by σ = |ωg|−

2
d+2 and ζab = σ−1gab. In the scale defined by σ :

ζabPab = 1
d
ζabRab = σ−1(d+ 1)

so Equation (4.42) becomes :

∆T f
∇ζ= σ−1

(
ω(ω + d)f + gab∇a∇bf

)
. (4.43)

This is the Klein-Gordon operator with mass defined by the relation ω(ω + d) = −m2.
Vice versa, for a given value of m there are therefore two weights on which ∆T acts exactly
as the Klein-Gordon operator with mass m :

ωm ∈
{1

2 (−d+ ξ) , ξ2 = d2 − 4m2
}
,

generically, ξ is complex.
On de-Sitter spacetime, the operator y is simply y = −∆T , therefore the equation yf =

0 for f ∈ E(ωm), in the scale determined by σ, is the Klein-Gordon equation for a classical
scalar field with mass m. More precisely, solutions to the Klein-Gordon equation with
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4.6. Projective Laplace operator and Boundary calculus

mass m on de-Sitter space are in one-to-one correspondence with densities of weight ωm
in ker y; the correspondance being accomplished naturally via the map ϕ 7→ ϕσ

ωm
2 ≡ fϕ.

The operator y = −1
I2 H

ABDADB has the advantage that it is well-defined on the boundary
and therefore, expressed in a scale that is regular at the boundary, it can be used to study
the asymptotic behaviour of solutions to the Klein-Gordon equation. Let us work this out
explicitly on our example. Introduce the coordinate functions (ψ, ϑ), ψ ∈ R, ϑ ∈ Sn and
recall that ρ = 1

2 cosh2 ψ
is a boundary defining function. Each local frame (ω0, . . . , ωd) on

T ∗M defines a positive density of any weight ω that we will call |ω0 ∧ · · · ∧ ωd|−
ω

d+2 . For
simplicity : let ω1, . . . , ωd be dual to an orthonormal frame on TSd and write ω1∧· · ·∧ωd =
dΩd. Then |dρ ∧ dΩd|

−ω
d+2 is smooth up to the boundary and:

σ = 2ρ(1 − 2ρ)
1

d+2 |dρ ∧ dΩn|
−2

d+2 .

By construction, the connection ∇s = ∇g + dρ
2ρ extends to the boundary and preserves the

2-density s = 1
ρ
σ; the scale s can therefore be used to study y near the boundary σ = 0.

Using the change of connection formulae, we find:

HAB ∇s=


s−1ρ−1gab

2s−1(1 − 2ρ)∂aρ
2s−1

 .

Hence, if expressed in terms of the connection ∇s, for f ∈ E(ω) :

yf = 2s−1(ω − 1)ωf + 4s−1ρ(1 − 2ρ)(ω − 1)∂aρ∇s
af + ζab (∇s

a∇s
bf + ωP s

abf) . (4.44)

Writing f = ϕs
ω
2 , and using the fact that ∇ss = 0, Lemma F.1.3, shows that:

yf = s
ω
2 −1ρ−1□sϕ+ 4s−1(ω − 1)(1 − 2ρ)∂ρϕ+ 2s−1(ω + d− 1)ωϕ)

= 2sω
2 −1

(
− 2ρ(1 − 2ρ)∂2

ρϕ+ [2(ω − 1)(1 − 2ρ) + (2ρ(1 − d) + d)]∂ρϕ

+ ∆Sdϕ+ ω(ω + d− 1)ϕ
)
.

(4.45)

Therefore, near the boundary, yf = 0, f = ϕs
ω
2 is equivalent to:

−2ρ(1 − 2ρ)∂2
ρϕ+ (1 + (1 − 2ρ)(d− 3 + 2ω))∂ρϕ+ ∆Sdϕ+ ω(ω + d− 1)ϕ = 0.
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Exploiting the spherical symmetry of the above equation by decomposing onto a spherical
harmonic λ = l(l + d− 1), the problem is reduced to the ODE:

−2ρ(1 − 2ρ)∂2
ρϕ+ (1 + (1 − 2ρ)(d− 3 + 2ω))∂ρϕ+ (ω(ω + d− 1) − λ)ϕ = 0. (4.46)

Since all coefficients are analytic functions of ρ, it is well adapted to the Frobenius
method [Inc56] and so we seek solutions of the form :

ϕ = ρν
∑
k≥0

αkρ
k.

Plugging this ansatz into Equation (4.46) yields the indicial equation :

ν(2ω + n− 2ν) = 2ν(h0 − ν − 1) = 0, (4.47)

where we have introduced h0 = hf = ω+ d+2
2 and h is the operator defined in Lemma 4.6.1.

Hence:
ν = 0 or ν = h0 − 1.

For k ≥ 1, the coefficients αk satisfy the following recurrence relation :

2(ν + k)(h0 − k − 1 − ν))αk = (2(ν + k − 1)(2ν + k + 1 − 2h0) + ω(ω + n− 1) − λ)αk−1,

which is readily solved for any given α0 provided that for all k ∈ N, k ̸= h0 − 1 (when
ν = 0) or k ̸= −(h0 − 1) when (ν = h0 − 1). In a generic case h0 ∈ C \ R, and there is
no obstruction to the existence of the series. Under the assumption that we avoid these
special cases, the Frobenius method yields two independent solutions to the equation, and
generic smooth solutions can be written :

ϕ = ϕ0 + ρh0−1ϕ1,

where ϕ0, ϕ1 are regular up to the boundary. Now, returning to the scale ∇g,

f = ϕ̃σ
ω
2 = ϕ̃ρ

ω
2 s

ω
2 .

Hence:
ϕ̃ = ϕ0ρ

− ω
2 + ρh0− ω

2 −1ϕ1 = ϕ0ρ
− ω

2 + ρ
ω
2 + d

2ϕ1. (4.48)
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4.6. Projective Laplace operator and Boundary calculus

Choosing ω ∈ {1
2(−d+ ξ), ξ2 = d2 − 4m2}, Equation (4.48) describes the asymptotic be-

haviour of solutions to the Klein-Gordon equation near the projective boundary. Observe
from (4.48) that the precise choice of weight in the identification ϕ 7→ ϕσ

ω
2 is inconsequen-

tial and switching between the two possible values at fixed mass m amounts to exchanging
ϕ0 and ϕ1. Overall, solutions behave asymptotically as :

ϕ̃ = ϕ0ρ
1
4 (d−

√
d2−4m2) + ϕ1ρ

1
4 (d+

√
d2−4m2).

Where
√
d2 − 4m2 is a (perhaps complex) square root of d2 − 4m2. This result should be

compared with [Vas10, Theorem 1.1].

4.6.4 Formal solution operator

As stated previously, using Proposition 4.6.1, one can formally generalise the previous
result, in the same manner as [GW14] in the conformal case, to the more general framework
of the rather general hypotheses A with the additional assumption that the solution HAB

to the Metrisability equation (ME2) is non-degenerate; recall that this implies that the
order of the compactification is 2. The idea is to look for formal operators A, generated
by xα, α ∈ C (x = σ) and y, that annihilate y from the right, i.e. that satisfy yA = 0.
Inspired by the Frobenius method, one can seek solutions of the form:

A = xν
∞∑
k=0

αkx
kyk.

Now, note the same reasoning outlined in the proof of Lemma 4.6.1, can be used to prove
that for any complex ν ∈ C,

[xν , y] = xν−1ν(h+ ν − 1). (4.49)

Hence, formally :

yA = yxν
∞∑
k=0

αkx
kyk = xν

∞∑
k=1

αkyx
kyk − xν−1

∞∑
k=0

ν(h+ ν − 1)αkxkyk,

= xν
∞∑
k=0

αkx
kyk+1 −

∞∑
k=0

xk−1k(h+ k − 1)αkyk − xν−1
∞∑
k=0

ν(h+ ν − 1)αkxkyk
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Considering the action of A on an eigenspace of the operator h = ω + d+2
2 with a fixed

eigenvalue h0, we have :

yA = xν
∞∑
k=0

αkx
kyk+1 −

∞∑
k=0

xk−1k(h0 − k − 1)αkyk − xν−1
∞∑
k=0

ν(h0 + ν − 1)αkxkyk,

= xν−1
( ∞∑
k=1

αk−1x
kyk − (h0 − 1)

∞∑
k=0

kαkx
kyk

+
∞∑
k=0

k2αkx
kyk − ν(h0 + ν − 1)

∞∑
k=0

αkx
kyk

)
.

In order to ensure Ay = 0, we demand that the operator between brackets vanish iden-
tically. To find a solution, it is necessary to be a little more precise about how we would
like A to act. In fact, the idea would be to take some smooth data f0 on the boundary,
extend it arbitrarily to f̄0 over M and Af̄0 should satisfy yAf̄0 = 0 and x−νAf̄0 should
restrict to f0 on the boundary. In other words, α0 = 1. Thus, after rewriting the above
equation in terms of a formal series F (z) :=

∞∑
k=0

αkz
k ∈ C[[z]], where zk =: (xy)k := xkyk,

we see that necessarily:
ν(h0 + ν − 1) = 0. (4.50)

Taking this into account, we find that the formal series F satisfies the ODE:

(zF ′)′ − (h0 − 1)F ′ + F = 0.

Equation (4.50) should be compared with the indicial equation (4.47) we obtained when
applying the Frobenius method in de-Sitter space.
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4.7 Exterior tractor calculus

In this section, we will enrich the boundary calculus in Lemma 4.6.1 for tractor forms
in order to develop similar projective methods for Proca style equations on k-forms. We
return to the general setting of a n-dimensional projective manifold (M,p). The first
stage is to understand the exterior algebra of projective co-tractor k-forms, we begin by
describing how the splitting of the exact sequence in Proposition (4.3.1) induces a splitting
of ΛkT ∗:

Lemma 4.7.1. Let (M,p) be a projective manifold of dimension n, k ∈ J1, n + 1K and
∇ ∈ p then:

ΛkT ∗ ∇∼= (Λk−1T ∗M)(k) ⊕ (ΛkT ∗M)(k).

Any section FA1...Ak
can be expressed as:

FA1...Ak
=
µa2...ak

ξa1...ak

 = kµa2...ak
Y[A1Z

a2
A2 · · ·Zak

Ak] + ξa1...ak
Za1
A1Z

a2
A2 · · ·Zak

Ak
. (4.51)

(The second component vanishes if k = n+1). Under the change of connection ∇̂ = ∇+Υ
the components transform according to: µ̂ = µ,

ξ̂ = ξ + Υ ∧ µ.
(4.52)

The reader will find a proof of Lemma 4.7.1 in Appendix E.2.

4.7.1 Wedge product and exterior derivative

The next stage is to describe how the usual operations of exterior calculus work with
respect to the representation in Lemma 4.7.1. The wedge product is relatively simple:

Lemma 4.7.2. Let F ∈ ΛkT ∗, G ∈ ΛlT ∗, and ∇ ∈ p on a projective manifold (M,p).
Suppose that:

F
∇=
 µ

ξ

 , G
∇=
 ν

η

 ,
then:

F ∧G
∇=
 µ ∧ η + (−1)kξ ∧ ν

ξ ∧ η

 . (4.53)
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A tractor analogue of the exterior derivative is, as for the Laplacian, provided, by the
Thomas D-operator (Definition 4.6.1). The result can be stated as follows:

Proposition 4.7.1. Let DA denote the projective Thomas D-operator then one can define
a co-chain complex:

· · · −→ E[A1,...,Ak](ω) D−→ E[A1,...,Ak+1](ω − 1) D−→ E[A1,...,Ak+2](ω − 2) −→ · · ·

The operator D is defined on a section F ∈ E[A1,...,Ak](ω) by

DF = (k + 1)D[A1FA2···Ak+1].

Furthermore, in terms of Lemma 4.7.1, if F ∇=
 µa2···ak

ξa1···ak

 then:

DF
∇=
 (ω + k)ξa2···ak+1 − k∇[a2µa3···ak+1]

(k + 1)∇[a1ξa2···ak+1] + (k+1)!
(k−1)!P[a1a2µa3···ak+1]

 . (4.54)

Proof. First, we prove the expression for DF in the splitting associated with some con-
nexion ∇ ∈ p. Let F ∈ ΛkT ∗(ω) be such that:

FA1A2...Ak

∇= kµa2...ak
Y[A1Z

a2
A2 . . . Z

ak

Ak] + ξa1...ak
Za1
A1Z

a1
A2 . . . Z

ak
Ak
.

By definition:
DAFA1A2...Ak

= ωFA1A2...Ak
YA + Za

A∇aFA1A2...Ak
.

Let us first concentrate on ∇aFA1A2...Ak
. Using Equation (4.30), we find that:

∇aFA1A2...Ak
= k∇aµa2...ak

Y[A1Z
a2
A2 . . . Z

ak

Ak] + kPa[a1µa2...ak]Z
a1
A1 . . . Z

ak
Ak

+ ∇aξa1...ak
Za1
A1 . . . Z

ak
Ak

− ξa1...ak

k∑
i=1

Za1
A1 . . . Z

ai−1
Ai−1

δai
a YAi

Z
ai+1
Ai+1

. . . Zak
Ak
,

in which the last term simplifies to:

−kξaa2...ak
Y[A1Z

a2
A2 . . . Z

ak

Ak].
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Hence, in column vector form this can be written as:

∇aF =
 ∇aµa2...ak

− ξaa2...ak

∇aξa1...ak
+ kPa[a1µa2...ak]

 .
Since DF = (k+ 1)D[AFA1A2...Ak], any terms containing two YAi

will not contribute in the
final expression, furthermore for an arbitrary (weighted) tensor Ta1...ak

:

Ta1...ak
Za1

[A1
. . . Zak

Ak] = T[a1...ak]Z
a1
A1 . . . Z

ak
Ak
.

Hence:

DF
∇=(k + 1)ωξa1...ak

Y[AZ
a1
A1 . . . Z

ak

Ak] + k(k + 1)(∇aµa2...ak
− ξaa2...ak

)Y[A1Z
a
AZ

a2
A2 . . . Z

ak

Ak]
::::::::::::::::::::::::::::::::::::::::::::::::(

(k + 1)∇aξa1...ak
+ k(k + 1)P[aa1µa2...ak]

)
Za
AZ

a1
A1 . . . Z

ak
Ak
.

Swapping A and A1 in the underlined term in order to respect the sign conventions laid out
implicitly in Lemma 4.7.1 we arrive at the desired result. We now proceed to calculate D2F

using 4.54. For readability, we treat each slot in the column vector notation separately.
First of all, in the top slot we have:

(ω + k)(k + 1)∇[a2ξa3···ak+2] + (ω + k)(k + 1)!
(k − 1)!P[a2a3µa4...ak+2]

−(k + 1)(ω + k)∇[a2ξa3...ak+2] − k(k + 1)∇[a2∇a3µa4...ak+2]

= (ω + k)(k + 1)!
(k − 1)!P[a2a3µa4...ak+2] − k(k + 1)∇[a2∇a3µa4...ak+2].

(4.55)

As for the bottom slot, we have:

(k + 2)(k + 1)∇[a1∇a2ξa3...ak+2] + (k + 2)!
(k − 1)!∇[a1Pa2a3µa4···ak+2]

+(k + 2)!
k! (ω + k)P[a1a2ξa3···ak+2] − (k + 2)!

(k − 1)!P[a1a2∇a3µa4...ak+2]

= (k + 2)(k + 1)∇[a1∇a2ξa3...ak+2] + (k + 2)!
k! (ω + k)P[a1a2ξa3···ak+2]

+(k + 2)!
(k − 1)!Y[a1a2a3µa4···ak+2].

(4.56)

Where we recall that Yabc := 2∇[aPb]c. Expressions (4.55) and (4.56) simplify enormously
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in the case that ∇ is a special connection (cf. Section 4.3.3). Since there is always a special
connection in any projective class 22, there is no loss in generality if we restrict to this
case. We appeal now to Lemma 4.3.2, which states that Pab is symmetric so that:

D2F
∇=
−d2µ

d2ξ

 . (4.57)

d denotes here the covariant exterior derivative on the weighted tensor bundles. In general,
d2 ̸= 0, however, here, using again Lemma 4.3.2, the density bundles are flat so we can
conclude that:

D2F = 0.

Remark 4.7.1. In the preceding proof, one can avoid choosing a particular scale and di-
rectly use the fact that 2P[ab] = −βab to show that the final expressions in equations (4.55)
and (4.56) vanish.

4.7.2 Tractor Hodge duality derived from a solution of the metris-
ability equation

Towards our aim to formulate a tractor version of the Proca equation, we describe
here how one can use a solution to the metrisability equation to define a tractor Hodge
star operator. The setting is as follows, we suppose we have a projective manifold with
boundary (M,p), with oriented interior M and boundary ∂M , in addition to a solution
ζ of the metrisability equation with degeneracy locus D(ζ) = ∂M and such that HAB =
L(ζab) is non-degenerate on M .

On M , ζab is non-degenerate and defines a smooth metric on the weighted cotangent
bundle T ∗M(1). The orientation on M induces a natural orientation on (ΛnT ∗M)(n), so
it makes sense to talk of the positive volume form (induced by ζ) ω ∈ Γ ((ΛnT ∗M)(n)).
To define an orientation on the tractor bundle, we introduce: σ = |ω|−2 ∈ Γ(E(2)); it
is a positive defining density for the boundary. Set IA = DAσ ∈ EA(1), since HAB is
non-degenerate, the smooth function σ−1I2 is non-vanishing on M , and so one can define
on M :

J0
B = σ− 1

2√
|σ−1I2|

IB.

22. We assume that a manifold’s topology is second-countable.
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Since any positively oriented orthonormal frame (ωia) induces an orthonormal family of
tractors J iB = Zb

Bω
i
b, we define an orientation of the tractor bundle by declaring that

J0 ∧ · · · ∧Jn is positive. Since (J0, . . . , Jn) is an orthonormal family with respect to HAB,
this procedure also yields a local expression of the positive tractor volume form in the
splitting of the Levi-Civita connexion ∇g of gab = σζab on M :

ΩT
∇g=

 2σ
1
2√

|σ−1I2|
ω

0

 .
We can now state the following result:

Proposition 4.7.2. In the notation of the preceding paragraph, let ∇ ∈ p and F ∈ ΛkT ∗

be such that: FA1...Ak

∇= kµa2...ak
Y[A1Z

a2
A2 · · ·Zak

Ak] + ξa1...ak
Za1
A1 · · ·Zak

Ak
then on the interior

M :

⋆F
∇=


2σ

1
2√

|σ−1I2|

(
(−1)k ⋆ ξ + T⌟(⋆µ)

)
σ− 3

2 I2

2
√

|σ−1I2|
⋆ µ− 2σ

1
2√

|σ−1I2|

[
(−1)kT ♭ ∧ (⋆ξ) + T ♭ ∧ T⌟(⋆µ)

]
 , (4.58)

where: T b = − 1
n+1∇aζ

ab, ♭ denotes the lowering of indices using ζab and ⌟ denotes con-
traction.

Proof. Let us first verify that the formula is reasonable on M in the splitting determined
by ∇g. Since T is zero in this scale, the formula reduces to:

⋆F
∇g=

(−1)k 2σ
1
2√

|σ−1I2|
⋆ ξ

σ− 3
2 I2

2
√

|σ−1I2|
⋆ µ

 .

Using Equation (4.53) let us calculate F ∧ ⋆F in the scale ∇g. The result is:

F ∧ ⋆F =

 σ− 3
2 I2

2
√

|σ−1I2|
µ ∧ ⋆µ+ 2σ

1
2√

|σ−1I2|
ξ ∧ ⋆ξ

0

 . (4.59)

Recall that the inner product h on ΛkT ∗ is defined by:

h(F,G) = 1
k!H

A1B1 . . . HAkBkFA1...Ak
GB1...Bk

.

Since, in the splitting given by ∇g, we have that: HAB ∇g= ζabWA
a W

B
b + 1

n
ζabPabX

AXB,
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hence:
h(F, F ) = 1

n
ζabPabζ(µ, µ) + ζ(ξ, ξ),

where, Pab is the projective Schouten tensor in the scale ∇g and, for any section of ν of
(ΛkT ∗M)(k + ω), ζ(ν, ν) is shorthand for:

1
k!ζ

a1b1 · · · ζakbkνa1...ak
νb1...bk

.

In order to have a totally invariant formula, we observe that IA = DAσ
∇g= 2σYA, thus:

I2 = 4σ2

n
ζabPab,

where Pab is calculated in the scale ∇g. Hence:

ζabPab
n

= I2σ−2

4 .

Consequently:
h(F, F ) = I2σ−2

4 ζ(µ, µ) + ζ(ξ, ξ)

Evaluating the top slot in Equation (4.59), we find:

σ− 3
2 I2

2
√

|σ−1I2|
µ ∧ ⋆µ+ 2σ 1

2√
|σ−1I2|

ξ ∧ ⋆ξ = σ− 3
2 I2

2
√

|σ−1I2|
ζ(µ, µ)ω + 2σ 1

2√
|σ−1I2|

ζ(ξ, ξ)ω

= h(F, F )
2σ 1

2√
|σ−1I2|

ω.

Therefore:
F ∧ ⋆F = h(F, F )ΩT ,

as desired. To verify that the result is correct for any connection in p, we only need
to verify that the components in Equation (4.58) transform correctly under a change of
connection ∇ → ∇ + Υ = ∇̂. According to Equation (4.52), the top slot, (TS), must be
invariant. To check this, note that ξ̂ = ξ+Υ∧µ and µ̂ = µ. Furthermore, T̂ b = − 1

n+1∇̂aζ
ab

and:
∇̂cζ

ab = ∇cζ
ab + Υdζ

dbδac + Υdζ
adδbc,
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which leads to:
∇̂aζ

ab = ∇aζ
ab + (n+ 1)Υaζ

ab.

Therefore:
T̂ = T − Υ♯ and T̂ ♭ = T ♭ − Υ. (4.60)

Since ξ̂ = ξ + Υ ∧ µ, Proposition E.3.1 shows that:

⋆ξ̂ = ⋆ξ + ⋆(Υ ∧ µ) = ⋆ξ + (−1)kΥ♯⌟ ⋆ µ.

Thus, overall:

(−1)k ⋆ ξ̂ + T̂⌟ ⋆ µ̂ = (−1)k ⋆ ξ + Υ♯⌟ ⋆ µ− Υ♯⌟ ⋆ µ+ T⌟ ⋆ µ,

= (−1)k ⋆ ξ + T⌟ ⋆ µ,

proving the projective invariance of the top slot as desired.
Referring again to Equation (4.52), we must now show that the bottom slot (BS) of

Equation (4.58) satisfies:
ˆ(BS) = (BS) + Υ ∧ (TS).

Observe that, since, µ̂ = µ the first term in (BS) is invariant, moreover, the second term
can be written: −T ♭∧(TS), so the desired result follows immediately from Equation (4.60).

4.7.3 Tractor co-differential and Hodge Laplacian

In the previous sections we have sufficiently enhanced the structure on the tractor
tensor algebra to introduce a tractor co-differential operator. Towards this, let s denote
the sign of the determinant of ζab on M , and set:

ε = sgn(σ−1I2);

observe that the sign of the determinant of HAB is then sε. For future convenience, we
introduce the notations:

f = σ−1I2, f ′ = df. (4.61)

Now:

Definition 4.7.1. By analogy with the usual exterior calculus, we define a tractor cod-
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ifferential on k-cotractors by:

D∗ = (−1)(n+1)(k−1)+1sε ⋆D ⋆ .

In the scale ∇g on M , for any F ∇g=
µ
ξ

 ∈ Γ[(ΛkT ∗)(ω)]:

D∗F
∇g=
 1

2f (f ′)#⌟µ− δµ
1

2f (f ′)#⌟ξ + δξ − (ω+n+1−k)σ−1f
4 µ

 . (4.62)

In the above equation, we have introduced the notation (f ′)# = ζab∇bf ∈ E(−2).

Proof. We prove Equation (4.62): applying successively Equations (4.58) and (4.54) to

F
∇g=
µ
ξ

 ∈ Γ[(ΛkT ∗)(ω)], we find:

D ⋆ F =


(ω+n+1−k)σ− 1

2 f

2|f |
1
2

⋆ µ+ 2(−1)k+1d
((

σ
|f |

) 1
2 ⋆ ξ

)
d
(
σ− 1

2 f

2|f |
1
2
⋆ µ
)

 ,

=


(ω+n+1−k)σ− 1

2 f

2|f |
1
2

⋆ µ+ 2σ
1
2 (−1)k+1

|f |
1
2

(
− 1

2f f
′ ∧ ⋆ξ + d(⋆ξ)

)
σ− 1

2

4|f |
1
2
f ′ ∧ ⋆µ+ σ− 1

2 f

2|f |
1
2
d ⋆ µ

 .

Applying once more the tractor Hodge star to this n+ 1 − (k − 1) form of weight ω − 1,
we find:

⋆D ⋆ F =
 (−1)n−k

2|f | ⋆ (f ′ ∧ ⋆µ) + (−1)n−kf
|f | ⋆ d ⋆ µ

(ω+n+1−k)σ−1f2

4|f | ⋆ ⋆µ+ (−1)k+1f
|f |

(
− 1

2f ⋆ (f ′ ∧ ⋆ξ) + ⋆d ⋆ ξ
)

= (−1)(n+1)(k+1)s

 −1
2|f |(f

′)#⌟µ+ f
|f |δµ

(ω+n+1−k)σ−1f2

4|f | µ− f
|f |

(
1

2f (f ′)#⌟ξ + δξ
)  .

Equation (4.62) now follows from the fact that ε = sgn(σ−1I2) = sgn(f).

The exterior differential calculus we have developed above leads us to define a new
Laplacian operator, analogous to the Hodge or de-Rham Laplacian. In general, it is to be
distinguished from HABDADB that we studied in Section (4.6.2). The remainder of this
section is devoted to obtaining an expression for D∗D + DD∗ = {D ,D∗}. In order to
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simplify the computation, we will work exclusively with the Levi-Civita connection ∇g of
g = σ−1ζ−1 on M ; any identities will extend by density to M . We first remark that the
weight 2 density I2 is, in general, not parallel in the scale ∇g.

Lemma 4.7.3. In an arbitrary scale ∇ ∈ p:

∇cI
2 = 8σ2

n
ζefYcef − 4σ

n
∇aσζ

efW b
ce f

Proof.
∇cI

2 = (∇cH
AB)IAIB + 2HAB(∇aIA)IB.

The second term is easily seen to cancel, and we evaluate the first one using Equa-
tion (ME2) and the calculations we did in Section 4.5.1. Finally, we have IA = 2σY A +
∇aσZ

a
A, thus:

2X(AW
B)

cE FH
EF IAIB = −8σ2ζefYcef + 4σ∇aσζ

efW b
ce f .

Let F denote an arbitrary section of (ΛkT ∗)(ω) given in the scale ∇g by:

F
∇g=
µ
ξ

 .
Equation (4.54) yields directly the expression for DF , which, due to the symmetry of Pab,
simplifies to:

DF
∇g=
(ω + k)ξ − dµ

dξ

 .
In the above expression d denotes, abusively, the covariant exterior derivative 23 on the
weighted bundles. Now:

⋆ DF =

 (−1)k+1 2σ
1
2

|f |
1
2
⋆ dξ

σ− 1
2 f

2|f |
1
2

((ω + k) ⋆ ξ − ⋆dµ)

 .
We apply again D , observing first that ⋆DF is a (n+ 1 − (k+ 1)) = n− k form of weight

23. cf. Annexe C
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ω − 1, thus:

D ⋆DF =


(ω−1+n−k)f

2(|f |σ)
1
2

((ω + k) ⋆ ξ − ⋆dµ) + 2(−1)kd
(
σ

1
2

|f |
1
2
⋆ dξ

)
d
(
σ− 1

2 f

2|f |
1
2

((ω + k) ⋆ ξ − ⋆dµ)
)
.


For readability, we will now proceed to treat the top and bottom slots separately. Let us
begin with the unevaluated differential in the top slot:

d

 σ
1
2

|f | 1
2
⋆ dξ

 = −σ
1
2
f ′ ∧ ⋆dξ

2f |f | 1
2

+ σ
1
2

|f | 1
2
d ⋆ dξ.

Downstairs we have:

σ− 1
2

4|f | 1
2
f ′ ∧ ((ω + k) ⋆ ξ − ⋆dµ) + σ− 1

2f

2|f | 1
2

((ω + k)d ⋆ ξ − d ⋆ dµ) .

Applying again the Hodge star to this (n+ 1 − k)-tractor form of weight (ω− 2) leads to
a new k-tractor form of weight ω − 2 with, in the top slot:

(−1)1+k(n−k)s

2|f |
(
(ω + k)(f ′)#⌟ξ − (f ′)#⌟dµ

)
+ (−1)k(n−k)sf

|f |
((ω + k)δξ − δdµ).

As for the bottom slot, it evaluates to:

(ω − 1 + n− k)f 2(−1)k(n−k)s

4|f |σ
((ω + k)ξ − dµ) + (−1)k(n−k)+1s

|f |

(
(f ′)#⌟dξ

2 + fδdξ

)
.

Overall:

⋆D ⋆DF =
 (−1)1+k(n−k)s

2|f |

(
(ω + k)(f ′)#⌟ξ − (f ′)#⌟dµ

)
+ (−1)k(n−k)sf

|f | ((ω + k)δξ − δdµ)
(ω−1+n−k)f2(−1)k(n−k)s

4|f |σ ((ω + k)ξ − dµ) + (−1)k(n−k)+1s
|f |

(
(f ′)#⌟dξ

2 + fδdξ
)

 .
It remains only to correct the sign ! The result is:

D∗DF
∇g=
 1

2f

(
(ω + k)(f ′)#⌟ξ − (f ′)#⌟dµ

)
− ((ω + k)δξ − δdµ)

− (ω−1+n−k)f
4σ ((ω + k)ξ − dµ) +

(
(f ′)#⌟dξ

2f + δdξ
)  .

Calculating DD∗ is slightly less involved as we have only to apply Equation (4.54) to
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Equation (4.62), taking care to note that D∗F is a k − 1 form of weight ω − 1.

DD∗F
∇g=


−(ω+k−2)(ω+n+1−k)σ

−1f

4 µ+ (ω+k−2)
(

1
2f (f ′)#⌟ξ + δξ

)

−d( 1
2f (f ′)#⌟µ) + dδµ

dδξ + d( 1
2f (f ′)#⌟ξ) − (ω+n+1−k)σ−1

4 d(fµ)

 .

We summarise these computations in:

Proposition 4.7.3. In the scale ∇g, {D∗,D} acts on F
∇g=
µ
ξ

 ∈ Γ((Λk(T ∗)(ω)) as:


{d, δ}µ− 2δξ + (ω+k−1) 1

f
∇⃗f⌟µ− 1

2Lf−1∇⃗fµ− (ω+k−2)(ω+n+1−k)σ−1f
4 µ

{d, δ}ξ− fσ−1

2 dµ−(ω+n+1−k)σ−1

4 (f ′ ∧ µ)+ 1
2Lf−1∇⃗fξ−(ω+k)(ω−1+n−k)fσ−1

4 ξ

 .
(4.63)

In the above we have introduced the Lie derivative LX extended to weighted vector fields
X by the formula:

LXξa1...ak
= Xa∇aξa1...ak

+ k(∇[a1X
a)ξ|a|a2...ak].

4.7.4 Weitzenbock identity

Having already introduced the Laplacian type operator ∆T = HABDADB on generic
tractor k-coforms in Section 4.6.2, it is interesting to explore how it compares to {D ,D∗}.
It turns out the relationship between them is completely analogous to that between the
Bochner Laplacian and the de-Rham Laplacian on the base manifold. As before, we per-
form all calculations in the Levi-Civita scale ∇g. Recall from Equation (4.42) that then:

HABDADBF
∇g= (ω + n− 1)ωfσ−1

4 F + ζab∇a∇bF,

where for a weighted k-cotractor form in an arbitrary scale ∇:

∇a∇bF
∇=
 ∇a∇bµa2...ak

− 2∇(aξb)a2...ak
− kPb[aµa2...ak]

∇a∇bξa1...ak
+ 2kP(a|[a1∇|b)|µa2...ak] + k(∇aPb[a1)µa2...ak] − kPa[a1ξ|b|a2...ak]

 .
To simplify computations a little, we restrict now to normal solutions of the Metris-

239



Chapter 4 – Projective differential geometry and asymptotic analysis

ability equation (see Section 4.5.2), for which a number of terms in the above expressions,
and in particular Equation (4.63), vanish. Furthermore, in the scale ∇g, Equation (4.41)
holds which, recast in terms of our current notations, becomes:

Pcd = fσ−1

4 ζcd. ((4.41)-2)

Finally, ∇Pcd and all derivatives of f vanish. Overall, performing all the preceding sim-
plifications, we have, for an arbitrary k form:

HABDADBF
∇g=
□µ+ 2δξ + (ω(ω + n− 1) − (n+ 1 − k))fσ−1

4 µ

□ξ + fσ−1

2 dµ+ (ω(ω + n− 1) − k)fσ−1

4 ξ

 ,
where we define: □µ = ζab∇a∇bµ.

Similarly, Equation (4.63) simplifies to:

{D ,D∗}F ∇g=


{d, δ}µ− 2δξ − (ω+k−2)(ω+n+1−k)σ−1f

4 µ

{d, δ}ξ− fσ−1

2 dµ−(ω+k)(ω−1+n−k)fσ−1

4 ξ

 .

From these expressions we will show:

Proposition 4.7.4. Let F ∈ Γ((ΛkT ∗)(ω)) and suppose that HAB is a normal solution
to the Metrisability equation, then:

({D,D∗}F )A1...Ak
= −(HABDADBF )A1...Ak

+ k(k + 1)HABΩ C
[A|B| A1

F|C|A2...Ak].

In the above, Ω C
AB D = Ω C

ab DZ
a
AZ

a
B and Ω C

ab D is the tractor curvature tensor. (cf. Equa-
tion (4.32) and the end of Section (4.3.4)).

Proof. We first inspect the difference between the order zero terms in each slot of the two
tractors:

(ω + k − 2)(ω + n+ 1 − k) = ω(ω + n− 1) − (n+ 1 − k) − (k − 1)(n+ 1 − k),

(ω + k)(ω + n− 1 − k) = ω(ω + n− 1) − k + k(n− k).
(4.64)

Moreover, in index notation the usual Weitzenbock identity extended to weighted tensors
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reads:

{d, δ}ξa1...ak
+ ζab∇a∇bξa1...ak

=
k∑
i=1

ζabR c
aia b

ξa1...ai−1cai+1...ak

+
k∑
i=1

k∑
j=1
j ̸=i

ζabR c
aia aj

ξa1...aj−1caj+1...ai−1bai+1...ak
.

(4.65)

Now, appealing to Equations (4.26) and ((4.41)-2), we have:

R c
ab d = W c

ab d + (δcaζbd − δcbζad)
fσ−1

4 .

Therefore:

ζabR c
aia b

ξa1...ai−1cai+1...ak
= ζabW c

aia b
ξa1...ai−1cai+1...ak

+ fσ−1

4 ζab
(
δcai
ζab − δcaζaib

)
︸ ︷︷ ︸

(n−1)δc
ai

ξa1...ai−1cai+1...ak

= ζabW c
aia b

ξa1...ai−1cai+1...ak
+ fσ−1

4 (n− 1)ξa1...ak
,

and:

ζabR c
aia aj

ξa1...aj−1caj+1...ai−1bai+1...ak
= ζabW c

aia aj
ξa1...aj−1caj+1...ai−1bai+1...ak

+ fσ−1

4 ζab
(
δcai
ζaaj

− δcaζaiaj

)
ξa1...aj−1caj+1...ai−1bai+1...ak︸ ︷︷ ︸

=−ξa1...ak

.

So Equation (4.65) can be written:

{d, δ}ξa1...ak
+ ζab∇a∇bξa1...ak

=
 Terms involving

Weyl tensor

+ [(n− 1)k − k(k − 1)]︸ ︷︷ ︸
=k(n−k)

fσ−1

4 ξa1...ak
.

The second term in the above equation accounts exactly for the differences observed in

241



Chapter 4 – Projective differential geometry and asymptotic analysis

Equation (4.64) and it follows that:

{D,D∗}F +HABDADBF
∇g=



k−1∑
i=1

ζabW c
aia b

µa1...ai−1cai+1...ak−1

+
k−1∑
i=1

k−1∑
j=1
j ̸=i

ζabW c
aia aj

µa1...aj−1caj+1...ai−1bai+1...ak−1 .

k∑
i=1

ζabW c
aia b

ξa1...ai−1cai+1...ak

+
k∑
i=1

k∑
j=1
j ̸=i

ζabW c
aia aj

ξa1...aj−1caj+1...ai−1bai+1...ak
.


We must now attempt to identify the tractor on the right-hand side of the above equation.
We claim that it is exactly k(k + 1)HABΩ C

[A|B| A1
F|C|A2...Ak]. Where:

Ω C
AB D = Ω C

ab DZ
a
AZ

b
B

∇g= W c
ab dW

C
c Z

a
AZ

b
BZ

d
D.

The calculation is « merely » technical and presents no conceptual subtleties, therefore we
will only carry it out here fully on the bottom component and leave the upper component
to the reader. We first write:

k(k + 1)HABΩ C
[A|B| A1

F|C|A2...Ak] = HAB 1
(k − 1)!

∑
σ∈Sk+1

ε(σ)Ω C

Dσ(1)B σ(2)FCDσ(3)...Dσ(k+1) .

For convenience, we have introduced a new set of indices {Di} defined by:

D1 = A,Di = Ai−1, i ≥ 2.

Specialising to the Levi-Civita scale ∇g, the right-hand side is:

HAB 1
(k − 1)!

∑
σ∈Sk+1

ε(σ)W c
d1b d2W

C
c Z

d1
Dσ(1)

Zb
BZ

d2
Dσ(2)

FCDσ(3)...Dσ(k+1) .

Now: HABZb
B

∇g= ζabW a
A so we must calculate:

T =
∑

σ∈Sk+1

ε(σ)ζabWA
a W

c
d1b d2W

C
c Z

d1
Dσ(1)

Zd2
Dσ(2)

FCDσ(3)...Dσ(k+1) .
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In order to isolate the bottom slot, consider FA1...Ak

∇g= ξa1...ak
Za1
A1 . . . Z

ak
Ak

. In this case,

T =
∑

σ∈Sk+1

ε(σ)ζabWA
a W

c
d1b d2ξc̃d3...dk+1 W

C
c Z

c̃
C︸ ︷︷ ︸

=δc̃
c

Zd1
Dσ(1)

Zd2
Dσ(2)

Zd3
Dσ(3)

. . . Z
dk+1
Dσ(k+1)

,

=
∑

σ∈Sk+1

ε(σ)ζabWA
a W

c
d1b d2ξcd3...dk+1Z

d1
Dσ(1)

Zd2
Dσ(2)

Zd3
Dσ(3)

. . . Z
dk+1
Dσ(k+1)

.

Observe now that T can be rewritten:

T =
∑

σ∈Sk+1

ε(σ)ζabWA
a W

c

dσ(1)b dσ(2)
ξcdσ(3)...dσ(k+1)Z

d1
D1Z

d2
D2Z

d3
D3 . . . Z

dk+1
Dk+1

,

=
∑

σ∈Sk+1

ε(σ)ζabWA
a W

c

dσ(1)b dσ(2)
ξcdσ(3)...dσ(k+1)Z

d1
A Z

d2
A1Z

d3
A2 . . . Z

dk+1
Ak

,

=
∑

σ∈Sk+1

ε(σ)ζd1bW
c

dσ(1)b dσ(2)
ξcdσ(3)...dσ(k+1)Z

d2
A1Z

d3
A2 . . . Z

dk+1
Ak

.

If σ(1) = 1, then the summand vanishes leading to:

T =
∑

σ∈Sk+1
σ(1)̸=1

ε(σ)ζd1bW
c

dσ(1)b dσ(2)
ξcdσ(3)...dσ(k+1)Z

d2
A1Z

d3
A2 . . . Z

dk+1
Ak

.

We now seek to exploit the antisymmetry of ξ, first we note that:

T =
k+1∑
i=2

∑
σ∈Sk+1

σ(1)=i

ε(σ)ζd1bW c
dib dσ(2)

ξcdσ(3)...dσ(k+1)Z
d2
A1Z

d3
A2 . . . Z

dk+1
Ak

.

It is interesting to split the inner sum into two further sums as follows:
∑

σ∈Sk+1
σ(1)=i

σ(2)=1

ε(σ)ζd1bW c
dib d1ξcdσ(3)...dσ(k+1)Z

d2
A1Z

d3
A2 . . . Z

dk+1
Ak

︸ ︷︷ ︸
=T i

1

+
k+1∑
j=2
j ̸=i

∑
σ∈Sk+1

σ(2)=j

σ(1)=i

ε(σ)ζd1bW c
dib dj

ξcdσ(3)...dσ(k+1)Z
d2
A1Z

d3
A2 . . . Z

dk+1
Ak

︸ ︷︷ ︸
=T i

2

.
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Consider now a generic term in the sum T i1. If we define:

d̃1 = c, d̃l = dσ(l+1), 2 ≤ l ≤ k;

then:
ξd̃1...d̃k

= ε(s)ξd̃s(1)...d̃s(k)
, s ∈ Sk.

Considering the permutation s given by:

s(l) =

σ
−1(l) − 1 if 1 ≤ l < i,

σ−1(l + 1) − 1 if i ≤ l ≤ k,

which satisfies s(1) = 1, and, by Appendix E.2, ε(s) = (−1)i−1ε(σ), then we have:

ξcdσ(3)...dσ(k+1) = ξd̃1...d̃k
= (−1)i−1ε(σ)ξd̃s(1)...d̃s(k)

= (−1)i−1ε(σ)ξcd2...di−1di+1dk+1 .

Overall:
T i1 = (k − 1)!(−1)i−1ζd1bW c

dib d1ξcd2...di−1di+1dk+1Z
d2
A1Z

d3
A2 . . . Z

dk+1
Ak

.

Hence:

1
(k − 1)!

k+1∑
i=2

T ik =
k+1∑
i=2

(−1)i−1ζd1bW c
dib d1ξcd2...di−1di+1dk+1Z

d2
A1Z

d3
A2 . . . Z

dk+1
Ak

,

=
k+1∑
i=2

(−1)i−1ζabW
c

di−1b a
ξcd1...di−2didk

Zd1
A1Z

d2
A2 . . . Z

dk
Ak
,

=
k∑
i=1

ζabW c
dib a

ξd1...di−1cdi+1dk
Zd1
A1Z

d2
A2 . . . Z

dk
Ak
.

We move on now to study a generic term a(σ, i, j) in T i2:

a(σ, i, j) = ε(σ)ζd1bW c
dib dj

ξcdσ(3)...dσ(k+1)Z
d2
A1Z

d3
A2 . . . Z

dk+1
Ak

,

It can be handled by the same reasoning as before, but now we should distinguish between
the cases i < j and j > i. In the first case, s(j) = 1 and:

a(σ, i, j) = (−1)i−1ζd1bW c
dib dj

ξd1...dj−1cdj+1...di−1di+1...dk+1Z
d2
A1Z

d3
A2 . . . Z

dk+1
Ak

,
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In the second case: s(j − 1) = 1, and:

a(σ, i, j) = (−1)i−1ζd1bW c
dib dj

ξd1...di−1di+1...dj−1cdj+1...dk+1Z
d2
A1Z

d3
A2 . . . Z

dk+1
Ak

.

Overall:

1
(k − 1)!T

i
2 =

i−1∑
j=2

(−1)i−1ζd1bW c
dib dj

ξd1...dj−1cdj+1...di−1di+1...dk+1Z
d2
A1Z

d3
A2 . . . Z

dk+1
Ak

+
k+1∑
j=i+1

(−1)i−1ζd1bW c
dib dj

ξd1...di−1di+1...dj−1cdj+1...dk+1Z
d2
A1Z

d3
A2 . . . Z

dk+1
Ak

.

Reindex now as follows:

i−1∑
j=2

(−1)i−1ζabW c
dib dj−1

ξad1...dj−2cdj ...di−2di...dk
Zd1
A1Z

d2
A2 . . . Z

dk
Ak
,

=
i−2∑
j=1

(−1)i−1ζabW c
dib dj

ξad1...dj−1cdj+1...di−2di...dk
Zd1
A1Z

d2
A2 . . . Z

dk
Ak
,

and similarly for the second sum so that:

1
(k − 1)!

k+1∑
i=2

T i2 = 1
(k − 1)!

k∑
i=1

T i+1
2 ,

=
k∑
i=1

k∑
j=1
j ̸=i

ζabW c
dib dj

(−1)iξad1...dj−1cdj+1...di−1di+1...dk
Zd1
A1Z

d2
A2 . . . Z

dk
Ak
,

=
k∑
i=1

k∑
j=1
j ̸=i

ζabW c
dib dj

ξd1...dj−1cdj+1...di−1adi+1...dk
Zd1
A1Z

d2
A2 . . . Z

dk
Ak
.

This proves the result for the bottom slot. We briefly outline the proof for the top slot, it
is simpler to work directly with FA1...Ak

= kµa2...ak
Y[A1Z

a2
A2 · · ·Zak

Ak],

FA1...Ak
= 1

(k − 1)!
∑
σ∈Sk

ε(σ)µa2...ak
YAσ(1)Z

a2
Aσ(2)

· · ·Zak
Aσ(k)

=
k∑
i=1

(−1)i−1µa1...ai−1ai+1...ak
YAi

Za1
A1 · · ·Zai−1

Ai−1
Z
ai+1
Ai+1

· · ·Zak
Ak
.
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In this case:

T =
k∑
i=2

σ∈Sk+1

(−1)i−1ε(σ)WA
a W

c
d1b d2µcd3...didi+2...dk

Zd1
Dσ(1)

Zd2
Dσ(2)

Zd3
Dσ(3)

· · ·Zdi
Dσ(i)

YDσ(i+1)Z
di+2
Dσ(i+2)

· · ·Zdk+1
Dσ(k+1)

.

Note that the index i starts at 2 since the first term vanishes as YCWC
c = 0. We then

apply the same method of computation as before to transform the sum over Sk+1.

4.7.5 Operator algebra

The projectively invariant operators D ,D∗ and σ are the beginnings of an operator
algebra that we will seek to exploit to write down a tractor version of the Proca equation.
The commutators [D , σ] and [D∗, σ] are directly related to the weight 1 tractor: IA = DAσ,
as follows:

Lemma 4.7.4. Define the operators: I : E[A1,...Ak](ω) → E[A1,...,Ak+1](ω + 1) and I ∗ :
E[A1,...,Ak](ω) → E[A1,...,Ak−1](ω + 1) by:

I F = I ∧ F , where IA = DAσ,

I ∗ = εs(−1)(k+1)(n+1)+1 ⋆I ⋆ .

Then, in the scale ∇g on M , for FA1...Ak

∇g=
µ
ξ

 ∈ E[A1,...,Ak](ω);

I

µ
ξ

 =
2σξ

0

 and I ∗

µ
ξ

 =
 0

−f
2µ

 = −I⌟F.

Furthermore:
{I ,I ∗} = −fσ,

[D , σ] = I , [D∗, σ] = I ∗,

I 2 = I ∗2 = 0.

(4.66)

1
f
I and 1

f
I ∗ play an analogous role to 1

f
D , 1

f
D∗ with respect ỹ. In the case of normal

solutions to the Metrisability equation, we can push things a little further:

Lemma 4.7.5. In the case that HAB is a normal solution to the metrisability equation
then:

{D∗,I } = −f

2 (ω + n+ 1 − k), {D ,I ∗} = −f

2 (ω + k), (4.67)
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4.8. Asymptotic analysis of the Proca equation

where ω and k are respectively the weight and degree operators. Furthermore:

{D∗,I ∗} + {D ,I ∗} = −fh,

with: h = ω + n+1
2 .

In particular, we have the following statement that generalises Lemma 4.6.1 to forms.

Corollary 4.7.1. Suppose that HAB is a normal solution to the metrisability equation
and set: 

x = σ,

ỹ = 1
f

(DD∗ + D∗D)

h = ω + n+1
2

,

then (x, ỹ, h) is an sl2-triple.

Proof. x increases weight by 2 and ỹ decreases weight by 2, hence: [h, x] = 2x and [h, ỹ] =
−2ỹ, lastly, using the above results:

[x, ỹ] = 1
f

([σ,DD∗] + [σ,D∗D ]) ,

= 1
f

([σ,D ]D∗ + D [σ,D∗] + [σ,D∗]D + D∗[σ,D ]) ,

= − 1
f

({I ,D∗} + {D ,I ∗})

= h.

Remark 4.7.2. The commutator also follows from the Weitzenbock identity in Proposi-
tion 4.7.4 and S. Porath’s sl2 in Proposition 4.6.1.

4.8 Asymptotic analysis of the Proca equation

We have now developed enough tools in order to write down a Maxwell type system
for general k-cotractor forms. DF = 0,

D∗F = 0.

However, we have not yet reaped all the benefits of Equation (4.67), which, in fact, contains
important information on the cohomology spaces of the co-chain complex defined by D .
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Chapter 4 – Projective differential geometry and asymptotic analysis

Note first that: [D ,ω+k] = 0 = [I ∗,ω+k]. Therefore, if ω+k ̸= 0 and F ∈ E[A1,...,ak](ω)
satisfies DF = 0, then, according to Equation (4.67):

D

(
− 2
f(ω + k)I

∗F

)
= F.

In other words:

Proposition 4.8.1. Let ω ̸= 0, then the cohomology spaces of the following co-chain
complex are trivial:

Γ(E(ω))
D=DA1−→ EA1(ω − 1) D−→ . . .

D−→ E[A1...An+1](ω − (n+ 1)).

Proof. The case k > 0 has already been treated. The case k = 0 is easily seen as follows.
In any scale ∇ in the projective class:

0 = DAf
∇=
 ωf

∇af

 ⇒ f = 0,

because ω ̸= 0.

The above Proposition simply means that as long as ω ̸= −k there is always a tractor
potential ! Thus, in this case, DF = 0 ⇔ F = DA and the co-tractor Maxwell system is
completely equivalent to: F = DA,

D∗DA = 0.
(4.68)

The potential formulation has a manifest gauge symmetry and if one works in a Lorenz
type gauge: D∗A = 0, the second equation becomes:

ỹA = 0.

Let us study what the equations D∗DA = 0 and D∗A = 0 mean for the components of
A in the Levi-Civita scale. Given our hypotheses, from Equation (4.62) we see that the
gauge condition is:

D∗A
∇g=
 −δµ
δξ − (ω + n+ 1 − k)fσ−1

4 µ

 = 0,
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4.9. Conclusion

from which we deduce that:

µ = 4σ
f(ω + n+ 1 − k)δξ,

provided that ω + n+ 1 − k ̸= 0. Moreover, since:

D∗D

 µ

ξ

 ∇g=
 δdµ− (ω + k)δξ
δdξ + fσ−1

4 (ω − 1 + n− k)dµ− fσ−1

4 (ω − 1 + n− k)(ω + k)ξ

 , (4.69)

we see that the component ξ satisfies a Proca equation with source where the mass is
defined by:

m2 = (ω − 1 + n− k)(ω + k).

Now, let ϕa1...ak
be a k-form on M . We can construct a weight (ω + k), k-form in a

natural manner by setting:
ξa1...ak

= ϕa1...ak
σ

ω+k
2 .

ξ is then easily transformed into a weight ω co-tractor k-form via the map:

ξa1...ak
7−→ ξa1...ak

Za1
A1 . . . Z

ak
Ak
.

Setting A = ξa1...ak
Za1
A1 . . . Z

ak
Ak

we see that the equation D∗DA = 0 expressed in the
Levi-Civita scale implies the gauge condition D∗A = 0 and implements on ξ the Proca
equation with mass defined above in the Lorenz gauge. The tractor formalism we have
developed can therefore be used to study the asymptotics of ξ, through the study of A
and the equation ỹA = 0.

Since, according to Corollary 4.7.1, (x, ỹ, σ) form satisfy the same formal relations as
the triplet (x, y, σ) we studied in Section 4.6.2. One can repeat the steps carried out in
Paragraph 4.6.4 and produce a formal solution operator for ỹ.

4.9 Conclusion

In this chapter, we have established, on a class of projectively compact manifolds,
results that are parallel to those available in the case of conformally compact manifolds.
In particular, we have constructed an exterior tractor calculus on order 2 projectively
compact manifolds. It is hoped that this will constitute a basis for a geometric approach to
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Chapter 4 – Projective differential geometry and asymptotic analysis

the asymptotic analysis of classical fields on such backgrounds that would be an alternative
to microlocal analysis. There are still some outstanding questions that we have not been
able to touch upon. In particular, it is not yet clear how to give a clear-cut analytical
meaning to the formal solution operators we obtain, and the question of how to treat the
asymptotically flat case, in which the structure at the basis of the formal construction
becomes trivial, remains open. This will be the object of work in the near future.
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Appendix A

APPENDIX TO Maximal Kerr-de Sitter
spacetimes

A.1 Connection forms

ω0
1 = Fω0 − εar

ρ3

√
∆θ sin θω3,

ω0
2 = −

√
∆θa

2 sin θ cos θ
ρ3 ω0 −

√
ε∆ra cos θ

ρ3 ω3,

ω0
3 =

√
ε∆ra cos θ

ρ3 ω2 − εar
√

∆θ sin θ
ρ3 ω1,

ω1
2 = −a2 sin θ cos θ

√
∆θ

ρ3 ω1 − εr

√
ε∆r

ρ3 ω2,

ω1
3 = −εar sin θ

√
∆θ

ρ3 ω0 − εr

√
ε∆r

ρ3 ω3,

ω2
3 = −a cos θε

√
ε∆r

ρ3 ω0 −
(

cotanθ(r2 + a2)
√

∆θ

ρ3 + G

ρ

)
ω3.

(A.1)

where: F = ∂
∂r

(√
ε∆r

ρ

)
and G = ∂

∂θ

(√
∆θ

)
.

A.2 Geodesic equations “à la Cartan"

Let γ : I −→ KdS, be a curve on one of the Boyer-Lindquist blocks of Kerr-de
Sitter spacetime. Decomposing on the orthonormal frame one has at each point t ∈ I,
γ̇(t) = Γi(t)Ei(γ(t)) ≡ Γi(t)Ei(t), so:

D

dt
γ̇(t) = (∇γ̇ γ̇)γ(t) = Γ̇i(t)Ei(t) + Γi(t)Γj(t)(∇Ei

Ej)γ(t),

= Γ̇i(t)Ei(t) + Γk(t)Γj(t)(ωij)γ(t)(Ek(t))Ei(t).
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If γ is a geodesic, using (A.1) we find that the components satisfy the following system
of differential equations:

Γ̇0 + FΓ0Γ1 − 2εar sin θ
√

∆θ

ρ3 Γ1Γ3 − a2 sin θ cos θ
√

∆θ

ρ3 Γ0Γ2 = 0,

Γ̇1 + F (Γ0)2 − 2εar sin θ
√

∆θ

ρ3 Γ0Γ3 − a2 sin θ cos θ
√

∆θ

ρ3 Γ2Γ1

−εr
√
ε ∆r

ρ3 (Γ2)2 − εr

√
ε∆r

ρ3 (Γ3)2 = 0,

Γ̇2 − εa2 sin θ cos θ
√

∆θ

ρ3 (Γ0)2 − 2εa cos θ
√
ε ∆r

ρ3 Γ0Γ3 + εa2 sin θ cos θ

√
∆θ

ρ3 (Γ1)2

+r
√
ε∆r

ρ3 Γ1Γ2 −
(

cotanθ(r2 + a2)
√

∆θ

ρ3 + G

ρ

)
(Γ3)2 = 0,

Γ̇3 + r

√
ε∆r

ρ3 Γ1Γ3 +
(

cotanθ(r2 + a2)
√

∆θ

ρ3 + G

ρ

)
Γ2Γ3 = 0.

A.3 Resultant

Let k be a field, and k[X] denote the ring of polynomials with coefficients in k. If
n ∈ N∗, kn[X] will denote the subspace of k[X] of polynomials with degree at most n.

Let P,Q ∈ k[X], n = degP , m = degQ. We suppose n > 0 and m > 0 so that neither
P nor Q is zero. Consider the equation:

UP + V Q = 0, (A.2)

where U et V are two elements of k[X].
(A.2) is clearly equivalent to UP = −V Q. Let D denote the pgcd of P and Q then

P = DP ′ and Q = DQ′ where pgcd(P ′, Q′) = 1.
With these notations (A.2) is equivalent to UP ′ = −V Q′, but, as pgcd(P ′, Q′) = 1

and k[X] is principal, then this implies that P ′ divides V . There is therefore a polynomial
C ∈ k[X] such that V = P ′C, and so U = −Q′C. The set of solutions to (A.2) is hence:

{(
−Q

D
C,

P

D
C
)
, C ∈ k[X]

}

. From this, we deduce that there is a solution (U, V ) ∈ km−1[X] × kn−1[X] if and only if
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pgcd(P,Q) ̸= 1. We can also express this in another way. Define a linear map ϕP,Q by:

ϕP,Q :
km−1[X] × kn−1[X] −→ kn+m−1[X]

(U, V ) 7−→ UP + V Q
(A.3)

According to the preceding discussion we see that, ϕP,Q is injective if and only if pgcd(P,Q) =
1.

The transpose of the matrix of ϕP,Q expressed in the bases

(
(Xm−1, 0), . . . , (1, 0), (0, Xn−1), . . . , (0, 1)

)
(Xm+n−1, Xm+n−2, . . . , X, 1)

of km[X] × kn[X] and km+n−1[X] respectively is called Sylvester’s matrix S(P,Q) and its
determinant, denoted by R(P,Q), (and thus the determinant of the endomorphism ϕP,Q)
is called the resultant of P and Q.

Proposition A.3.1. Let P =
n∑
i=0

aiX
i, Q =

m∑
j=0

bjX
j be two polynomials with coefficients

in k then the Sylvester matrix S(P,Q) is given by:

S(P,Q) =



an . . . . . . . . . a0 0 . . . . . . 0
0 an . . . . . . . . . a0 0 . . . 0
... . . . . . . . . . . . . . . .

. . . . . . ...
0 . . . . . . 0 an . . . . . . . . . a0

bm . . . . . . b0 0 . . . . . . . . . 0
0 bm . . . . . . b0 0 . . . 0 ...
... . . . . . . . . . . . .

. . . . . . . . .
...

0 . . . . . . 0 bm . . . . . . b0 0
0 . . . . . . . . . 0 bm . . . . . . b0



(A.4)

From our previous discussion we have:

R(P,Q) = 0 ⇔ pgcd(P,Q) ̸= 1

If we move instead to an extension L of K containing all the roots of P and Q, then this
condition is equivalent to the fact that P and Q have a common root in L. We recall the
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following result regarding the resultant:

Proposition A.3.2. Let P,Q ∈ k[X], degP = n, degQ = m. Let L be a splitting field
of P and α1, . . . αn be the (not necessarily distinct) roots of P , then:

R(P,Q) = amn
∏
i

Q(αi).

In this formula, an is the coefficient of Xn in P .

Definition A.3.1. When degP ′ = n−1 (which is always the case when the characteristic
of k is 0), the discriminant of P is defined by:

∆(P ) = (−1)
n(n−1)

2

an
R(P, P ′)

From Proposition A.3.2 we deduce:

Proposition A.3.3. Let P ∈ k[X] and suppose that P ′ is of degree n − 1 then, in a
splitting field of P :

∆(P ) = a2n−1
n

∏
i<k

(αi − αk)2

Where α1, . . . , αn are the (not necessarily distinct) roots of P .

A.4 Diverse useful formulae in Boyer-Lindquist like
coordinates

Lemma A.4.1.
gϕϕgtt − g2

ϕt = −∆r∆θ sin2 θ

Ξ4

Lemma A.4.2.

(gij) =


− gϕϕΞ4

sin2 θ∆θ∆r
0 0 Ξ4gϕt

sin2 θ∆r∆θ

0 1
grr

0 0
0 0 1

gθθ
0

Ξ4gϕt

sin2 θ∆r∆θ
0 0 − gtt Ξ4

sin2 θ∆r∆θ
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Lemma A.4.3. The metric-dual of dt is given by:

∇t = Ξ4

sin2 θ∆θ∆r

(−gϕϕ∂t + gϕt∂ϕ)

Lemma A.4.4. In Boyer-Lindquist-like coordinates one can write:

gtt = 1
Ξ2

(
−1 + 2Mr

ρ2 + l2(r2 + a2 sin2 θ)
)

gϕt = −a sin2 θ

Ξ2

(
l2(r2 + a2) + 2Mr

ρ2

)

A.5 Gluing topological spaces

Let X and Y be two topological spaces, U and V be open subsets of X and Y respec-
tively and ϕ be a homeomorphism of U onto V . We outline here the construction of a new
topological space containing both X and Y and where U and V have been identified. In
a sense, we will have glued X to Y along U and V . Let X ∐

Y denote their coproduct (or
disjoint union) and i : X −→ X

∐
Y, j : Y :−→ X

∐
Y the canonical injections. Define an

equivalence relation on X
∐
Y by:

p ∼ q ⇔ ([p = q] or [p = i(x), q = j(ϕ(x)), x ∈ U ] or [q = i(x), p = j(ϕ(x)), x ∈ U ])
(A.5)

Denote by X
∐
ϕ Y the quotient space of X ∐

Y by this equivalence relation and π :
X
∐
Y −→ X

∐
ϕ Y the canonical projection. We quote without proof the following results:

Proposition A.5.1. 1. j̄ = π ◦ j, ī = π ◦ i are continuous injective and open maps. X
and Y can then be identified with the open subsets ī(X) and j̄(Y ) of X ∐

ϕ Y .

2. ī(X) ∩ j̄(Y ) = ī(U) = j̄(V )

3. If F is an arbitrary topological space, f : X ∐
ϕ Y → F is continuous if and only if

the maps f ◦ ī et f ◦ j̄ are.

4. π is an open map

Points 2 and 3 can be useful for constructing maps on X
∐
ϕ Y from maps f, g defined

on X and Y separately. In fact, it suffices that they satisfy f(x) = g(ϕ(x)) for every
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x ∈ U for them to piece together to form a well-defined continuous map on X
∐
ϕ Y .

This is sometimes called the mapping lemma; it has natural generalisations to maps and
manifolds with more regularity. The above proposition also serves to prove the following
results:

Proposition A.5.2. 1. If X and Y are both locally Euclidean, then X
∐
ϕ Y is too.

2. If X and Y are both second-countable, X ∐
ϕ Y is too.

It is well known that separation properties of a quotient are relatively independent of the
separation properties of the original space, however since the canonical projection map is
open one has the following result:

Lemma A.5.1. X ∐
ϕ Y is Hausdorff if and only if R = {(p, q) ∈ (X ∐

Y )2, p ∼ q} is
closed in (X ∐

Y )2

With this result we can prove a technical criterion that will guarantee separation in all
cases of interest in the text:

Lemma A.5.2. Suppose that X and Y are Hausdorff and first countable then if there is
no sequence (xn)n∈N of points in U converging to a point in Ū \U and such that ϕ(xn)n∈N

converges to a point in V̄ \ V , X ∐
ϕ Y is Hausdorff.

Proof. By Lemma A.5.1 it suffices to show that R = {(p, q) ∈ (X ∐
Y )2, p ∼ q} is closed

in (X ∐
Y )2. Furthermore, as X and Y are first countable, it suffices to show that if two

sequences (pn)n∈N and (qn)n∈N of points in X
∐
Y are such that ∀n ∈ N, pn ∼ qn and

pn −→
n→∞

p, qn −→
n→∞

q then p ∼ q.
Let (pn)n∈N and (qn)n∈N be two such sequences. We can restrict ourselves to the case

where p ∈ i(X) and q ∈ j(Y ) as p and q play symmetric roles and if p ∈ i(X) (resp. j(Y ))
then q ∈ i(X) (resp. j(Y )) then for all large enough n, pn ∈ i(X) and qn ∈ i(X), as i(X)
is open in X

∐
Y , hence:

∃N ∈ N,∀n ≥ N, pn = qn ⇒ p = q.

Assume now that p ∈ i(X) and q ∈ j(Y ), we distinguish 3 cases:

Case 1: p ∈ i(X) \ i(U), then there is N ∈ N such that ∀n ≥ N, pn ∈ i(X) \ i(U), but as
qn ∼ pn for every n ∈ N it follows that for all n ≥ N, pn = qn so p = q. Which is
excluded as i(X) ∩ j(Y ) = ∅
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Case 2: p ∈ i(U), then again, there is N ∈ N such that ∀n ≥ N, pn ∈ i(U). Since q ∈ j(Y )
there is also N ′ ∈ N such that ∀n ≥ N ′, qn ∈ j(Y ). Moreover, as for every n ∈
N, pn ∼ qn it follows from (A.5) that:

∀n ≥ max(N,N ′),


qn = j(yn), yn ∈ V

pn = i(xn), xn ∈ U

yn = ϕ(xn)

As i and j are homeomorphisms onto their ranges, the sequences (xn) and (yn)
converge to points x ∈ X and y ∈ Y respectively. Furthermore, ϕ being continuous,
one must have y = ϕ(x) so: p ∼ q.

Case 3: p ∈ i(U) \ i(U), if only a finite number of points of the sequence lie in i(U) then
there is a rank N above which qn = pn so q = p which is excluded as q ∈ j(Y ).
Thus, we can assume that one can extract a subsequence (pφ(n))n∈ N of (pn)n∈N such
that for all n ∈ N, pφ(n) ∈ i(U). Necessarily, q ∈ j(V ), but q ̸∈ j(V ) as this would
imply p ∈ i(U), so q ∈ j(V ) \ j(V ). However, as ∀n ∈ N, qn ∼ pn there must exist
sequences (xn) and (yn) of points of X and Y respectively such that (xn) converges
to a point in Ū \ U , (yn) to a point in V̄ \ V and yn = ϕ(xn) for sufficiently large
n, but this contradicts our hypothesis. Hence p ∼ q and R is closed.
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Appendix B

APPENDIX TO Scattering theory for Dirac
fields near an Extreme Kerr-de Sitter

black hole

B.1 The Helffer-Sjöstrand formula

At several points in the text the Helffer-Sjöstrand formula is used quite liberally to
establish results about commutators. In this appendix, the reader will find some more
details about this formula.

B.1.1 Almost-analytic extensions

Let f ∈ C∞(R), one can extend f to C in the following manner: let n ≥ 1 and
τ ∈ C∞(R) be a smooth cut-off function satisfying: τ(s) = 1 for |s| < 1 and τ(s) = 0 for
|s| > 2, then we set for z ∈ C, z = x+ iy, (x, y) ∈ R2:

f̃(z) = σ(x, y)
n∑
r=0

f (r)(x)
r! (iy)r,

σ(x, y) = τ

(
y

⟨x⟩

)
.

(B.1)

f̃ is R-smooth and:

∂z̄f̃ = 1
2{∂xf̃ + i∂yf̃} =1

2
∑
r=0

(
f (r)(x)
r! (iy)r

)
(∂xσ + i∂yσ)

+ 1
2σ(x, y)f

n+1(x)
n! (iy)n.

(B.2)
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Since (∂xσ+ i∂yσ) ̸= 0 only if ⟨x⟩ ≤ y ≤ 2⟨x⟩ then if x is fixed and y → 0, the expression
in (B.2) implies that |∂z̄f̃(z)| ≤ O(|y|n) when y → 0; in particular, it is 0 if z ∈ R.

B.1.2 The formula

The Helffer-Sjöstrand formula gives a convenient form of the functional calculus for a
class of symbols f . In [Dav95], it is used to construct the entire functional calculus, but it
was originally proved assuming the usual function calculus in [HS87]. The formula makes
sense for symbols f for which there is some β ∈ R+ such that, for all n ∈ N:

sup
x∈R

|f (n)(x)⟨x⟩n+β| < +∞.

Following [Dav95], let us denote this set A , examples of elements of A are elements in
S1,1. The result can be stated as:

Theorem B.1.1. Let f ∈ A , then if A is a self-adjoint operator on a separable Hilbert
space H :

f(A) = i

2π

∫
C
∂z̄f̃(z)(A− z)−1dz ∧ dz̄. (B.3)

The integral converges in the operator norm topology and is independent of the choices of
n and σ in the almost-analytic extension.

The integral above can be interpreted as a Bochner integral and its convergences follows
from the following estimate on C \ R of the norm of the integrand:

||∂z̄f̃(z)(A− z)−1|| ≤ c
n∑
r=0

|f (r)(x)|⟨x⟩r−21U(x, y) + cfn+1(x)|y|n−11V (x, y), (B.4)

for some c ∈ R∗
+; U = {(x, y) ∈ R2, ⟨x⟩ < y < 2⟨x⟩} and V = {(x, y) ∈ R2, 0 < y < 2⟨x⟩}.

B.2 The Faà di Bruno formula

Let f, g ∈ C∞(R), then for any n ≥ 1:

(f ◦ g)(n) =
∑

(m1,...,mn)∈In

n!f (m1+···+mn) ◦ g
m1!1!m1m2!2!m2 . . .mn!n!mn

n∏
j=1

(
g(j)

)mj

,

In = {(m1, . . . ,mn) ∈ Nn,
n∑
j=1

jmj = n}.
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Appendix C

VECTOR VALUED DIFFERENTIAL FORMS

In the literature on principal connections, we are inevitably confronted with the notion
of vector valued differential forms. In this appendix, for completeness, we recall some of
the definitions and vocabulary useful for the main text and that one comes across in
textbooks on the topic. We will mainly follow [Ble05], who adopts a point of view close
to that predominant in Physics literature. We will also discuss equivalent ways to think
about so-called « basic » or « tensorial » forms and forms with values in a vector bundle
V over M .

C.1 Definitions

Definition C.1.1. Let V be a fixed finite dimensional vector space and P a smooth
manifold, a V -valued differential form is a section of the vector bundle :

Λk(P, V ) = Λk(T ∗P ) ⊗ (P × V ).

If (P, π,M) is a G-principal fibre bundle and (V, ρ) is a representation of G we will say
that α ∈ Γ(Λk(P, V )) is:

— equivariant if R∗
gα = ρ(g)−1α,

— horizontal if for all vector fields on P (X1, . . . , Xk), at least one of which vertical,
then α(X1, . . . , Xk) = 0.

A form that is both horizontal and equivariant is said to be tensorial.

Proposition C.1.1. Let (P, π,M) be a G-principal fibre bundle, and (V, ρ) a finite di-
mensional representation of G. A tensorial V -valued differential form on P is equivalent
to a section of the vector bundle over M :

Λk(T ∗M) ⊗ (P ×G V ).
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Proof. Let us first point out that the base of the bundle Λk(T ∗M)⊗(P ×GV ) is indeed M
and not P . The equivalence is quite clear in one direction, if we allow ourselves to choose
a connection on P . In this case, the projection π of P induces a vector space isomorphism:

dπp : Hp ⊂ TpP → Tπ(p)M,

which enables us to horizontally lift vector fields over M to vector fields over P . If X is a
vector field over M , let us call X̃ its horizontal lift. We will also denote by p the canonical
projection mapping P × V onto P ×G V (cf. Paragraph 1.4). With these notations, if α
is a tensorial k-form over P then for any vector fields X1, . . . , Xk over M , x ∈ M and
p ∈ π−1({x}), the equation :

αM,x(X1, . . . , Xk) = p(αp(X̃1, . . . , X̃k)),

is independent of the choice of p and the horizontal lift and thus defines a section of
Λk(T ∗P ) ⊗ (P ×G V ).

The other direction is slightly more subtle. Let αM be a section of Λk(T ∗M)⊗(P×GV ).
Of course, the idea is to consider the pullback of α by the projection π, π∗αM , however,
π∗αM is a priori only a section of Λk(T ∗P ) ⊗ π∗(P ×G V ), where : π∗(P ×G V ) is the
pullback bundle of P ×G V by π defined by :

π∗(P ×G V ) =
{
(p, v),∈ P × (P ×G V ), ˜̄π(v) = π(p)

} ∼=
∐
p∈P

{
(p, v), v ∈ (P ×G V )π(p)

}
.

In the above, we have borrowed notation from Paragraph 1.4 and have introduced the
projection P ×G V → M , ˜̄π. The remainder of the proof is dedicated to showing that the
bundle π∗(P ×G V ) is in fact trivial. Let r ∈ P and set :

ρ̃(r) :
V −→ ˜̄π−1({π(r)})
v 7−→ p((r, v)).

As for any v ∈ V, g ∈ G, p((rg, v)) = p((r, ρ(g)v)), one has :

ρ̃(rg) = ρ̃(r)ρ(g).
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One can then define a map from π∗(P ×G V ) into P × V by :

(p, v) 7→ (p, ρ̃(p)−1v). (C.1)

We leave the proof of the smoothness of our maps to the reader. Minus this detail, the
above shows that π∗(P ×G V ) is actually parallelisable, because the vector bundle mor-
phism defined by (C.1) is a vector space isomorphism on each of the fibres. The explicit
form of the map shows that, after untangling the pullback bundle, π∗αM is indeed a
tensorial form on P .

C.2 A few usual operations

C.2.1 The case of a Lie algebra

Let g be a Lie algebra, with bracket [ , ]. For g valued differential forms, there is a
natural generalisation of the wedge product. Let α and β be respectively g valued k-form
and l-form, one defines :

[α ∧ β](X1, . . . , Xk+l) = 1
k!l!

∑
σ ∈Sk+l

ε(σ)[α(Xσ(1), . . . , Xσ(k)), β(Xσ(k+1), . . . , Xσ(k+l))].

In the special case that g is a Lie subalgebra of the usual matrix algebra gln(R) then in
fact :

[α ∧ β] = α ∧ β − (−1)klβ ∧ α,

where α ∧ β is matrix product where component-wise multiplication is replaced by the
usual wedge product.

C.2.2 Exterior covariant derivative

Let (P, π,M) be a G-principal bundle, V a finite dimensional vector space, α a V -
valued k-form on P , and, (Ei) an arbitrary basis of V . Writing α = αiEi, one sets:

dα = dαiEi.

This definition is, in fact, independent of the choice of basis and inherits all the usual
properties of the exterior derivative on forms. When there is a connection, ω, on P we
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can define a covariant exterior derivative that sends tensorial forms to tensorial forms.
Indeed, call the horizontal component of an arbitrary vector X, XH and set :

dωα(X1, . . . , Xn) = dα(XH
1 , . . . , X

H
n ).

dωα is clearly horizontal and one can check equivariance as follows :

R∗
gdα = dR∗

gα = ρ(g−1)dα.

If ρ is a representation and ρ∗ is the induced Lie-algebra homomorphism g → gl(V )
then for a V -valued tensorial k-form α, and an arbitrary g valued l-form, β one can define:

β∧̇α(X1, . . . , Xk+l) = 1
k!l!

∑
σ∈Sk+l

ε(σ)ρ∗(β(Xσ(1), . . . , Xσ(l))) · α(Xσ(l+1), . . . , Xσ(l+k)).

This leads to a useful formula for the exterior covariant derivative:

Lemma C.2.1. Let (P, π,M) be a G-principal bundle, ω a principal connection on P ,
V a finite dimensional vector space, ρ : G → GL(V ) a representation and α a V -valued
tensorial k-form on P , then :

dωα = dα + ω∧̇α. (C.2)
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Appendix D

THE TRANSFORMATION LAW FOR

(Ωij(·, ei))

We follow the notation introduced in paragraph 4.2.3. Recall that in the equation:

ΩU = dΠU + ΠU ∧ ΠU ,

∧ is the matrix product where component-wise multiplication is replaced with the exterior
product of differential forms and dΠ is the matrix (dΠ)ij = d(Πi

j). We recall also that the
transformation law for ΠU is given by (4.15) :

ΠV = g−1dg + g−1ΠUg − 1
n+ 1tr(g−1dg)In − 1

n+ 1g
−1Ag, (D.1)

where Aij = tr(g−1dg(ej))ωi and the local sections are related by σV = σUg for some
g : U ∩ V → GLn(R).

To determine the transformation law for (Ωi
j(·, ei)) we first compute ΩV in several

steps. First of all, dΠV :

dΠV = − g−1dgg−1 ∧ dg − g−1dgg−1 ∧ ΠUg + g−1dΠUg − g−1Π ∧ dg

+ 1
n+ 1tr(g−1dgg−1 ∧ dg)I + 1

n+ 1g
−1dgg−1 ∧ Ag − 1

n+ 1g
−1dAg

+ 1
n+ 1g

−1A ∧ dg.

(D.2)
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Followed by :

ΠV ∧ ΠV = g−1ΠU ∧ ΠUg + g−1ΠU ∧ dg − 1
n+ 1g

−1ΠUg ∧ tr(g−1dg)I
:::::::::::::::::::::::::::

− 1
n+ 1g

−1(ΠU ∧ A)g + g−1dg ∧ g−1ΠUg + g−1dg ∧ g−1dg

− 1
n+ 1g

−1dg ∧ tr(g−1dg)I
:::::::::::::::::::::::::

− 1
n+ 1g

−1dgg−1Ag − 1
n+ 1tr(g−1dg)I ∧ g−1ΠUg
:::::::::::::::::::::::::::

− 1
n+ 1tr(g−1dg)I ∧ g−1dg
:::::::::::::::::::::::::

+ 1
(n+ 1)2 tr(g−1dg) ∧ tr(g−1dg))︸ ︷︷ ︸

=0

I

+ 1
(n+ 1)2 tr(g−1dg)I ∧ g−1Ag
::::::::::::::::::::::::::::

− 1
n+ 1g

−1A ∧ ΠUg − 1
n+ 1g

−1A ∧ dg

+ 1
(n+ 1)2 g

−1(A ∧ A)g + 1
(n+ 1)2 g

−1Ag ∧ tr(g−1dg)I
::::::::::::::::::::::::::::

(D.3)

When we sum together (D.2) and (D.3), the terms in (D.3) underlined by a straight line
cancel exactly those in (D.2). The terms in (D.3) underlined with a wavy line cancel
between themselves by anti-symmetry of the usual exterior product because I commutes
with any matrix. After simplification, we find that :

ΩV =g−1ΩUg + 1
n+ 1tr(g−1dgg−1 ∧ dg)I − 1

n+ 1g
−1dAg

− 1
n+ 1g

−1(ΠU ∧ A)g − 1
n+ 1g

−1(A ∧ ΠU)g + 1
(n+ 1)2 g

−1(A ∧ A)g.
(D.4)

Now, denote by (ẽi) the moving frame associated with σV , then, for each i, ẽi = gki ek.
Consequently, calling the components of ΩV , Ω̃i

j :

Ω̃i
j(·, ẽi) = gki Ω̃i

j(·, ek) = (gΩV )kj (·, ek).

Therefore, we only need to multiply (D.4) by g and evaluate the trace in the basis (ei).
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Computing each term separately :

(A ∧ ΠU)kj (·, ek) =
∑
k

∑
m

tr(g−1dg(em))ωk ∧ Πm
j (·, ek),

=
∑
k

∑
m

tr(g−1dg(em))
∑
i

Πm
j (ei)ωk ∧ ωi(·, ek),

=
∑
k

∑
m

tr(g−1dg(em))
∑
i

Πm
j (ei)(δikωk − ωi)),

= −(n− 1)
∑
m

Πm
j tr(g−1dg(em)),

= −(n− 1)(γ′ΠU)j.

(D.5)

Similarly :
(ΠU ∧ A)kj (·, ek) = −tr(g−1dg(ej))

∑
m

∑
k

Πk
m(ek)ωm,

(A ∧ A)kj (·, ek) = −(n− 1)tr(g−1dg(ej))tr(g−1dg),

= −(n− 1)tr(g−1dg)γ′
j,

tr(g−1dgg−1 ∧ dg) = 0.

(D.6)

The term dA is slightly more complicated :

(dA)ij = d(Aij) = − tr(g−1dgg−1dg(ej)) ∧ ωi + tr(g−1d(dg(ej))) ∧ ωi

+ tr(g−1dg(ej))dωi.
(D.7)

Using the structure equation (4.14) the last term is seen to be:

tr(g−1dg(ej))dωi = −tr(g−1dg(ej))(Πi
k ∧ ωk).

Since,
Πi
k ∧ ωk(·, ei) = Πi

k(em)ωm ∧ ωk(·, ei)

= Πi
k(em)(ωmδki − δmi ω

k)

= −Πi
k(ei)ωk,

(D.8)

we conclude that :

tr(g−1dg(ej))dωi(·, ei) = tr(g−1dg(ej))
∑
m

∑
k

Πk
m(ek)ωm. (D.9)
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The remaining terms evaluate to the following expressions :

tr(g−1d(dg(ej))) ∧ ωi(·, ei) = (n− 1)tr(g−1d(dg(ej))),

−tr(g−1dgg−1dg(ej)) ∧ ωi = −(n− 1)tr(g−1dgg−1dg(ej)),

−tr(g−1dgg−1dg(ej)) ∧ ωi + tr(g−1d(dg(ej))) ∧ ωi(·, ei) = (n− 1)dγ′
j.

(D.10)

Putting together equations (D.5),(D.6),(D.9) and (D.10), it follows that:

Ω̃i
j(·, ẽi) = Ωi

k(·, ei)gkj − n− 1
n+ 1dγ

′
kg

k
j + n− 1

n+ 1(γ′ΠU)kgkj − n− 1
(n+ 1)2 tr(g−1)γ′

kg
k
j , (D.11)

which is nothing more than (n− 1) times Equation (4.19).
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Appendix E

PROOFS THAT ARE NOT ESSENTIAL TO

THE MAIN TEXT

E.1 Calculating ∇aW
a

cd f

The computation is based on the second Bianchi identity :

∇[aR
d

bc] e = 0.

In this case of interest this leads to :

0 = ∇aR
a

cd f + ∇cR
a

da f + ∇dR
a

ac f ,

= ∇aR
a

cd f − ∇cRdf + ∇dRcf ,

= ∇aW
a

cd f + 2∇aδ
a
[cPd]f + 3∇[cβdf ] − (n− 1)Ycdf ,

= ∇aW
a

cd f + 3∇[cβdf ] − (n− 2)Ycdf .

Hence :
∇aW

a
cd f = (n− 2)Ycdf − 3∇[cβdf ]. (E.1)

E.2 Proof of Lemma 4.7.1

Let us prove the transformation law (4.52) for the components of a k-cotractor form
when we change connection according to ∇̂ = ∇+Υ. This can be done by induction. The
case k = 1 is well known, but we prove it here for completeness. Consider:

FA
∇=
 σ
µa

 ∇̂=
 σ̂
µ̂a
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then for any tractor TA ∇= ρYA + νbWA
b

∇̂= ρ̂YA + ν̂bW b
A:

FAT
A = ρσ + µbν

b = ρ̂σ̂ + µ̂bν̂
b.

Using Equation (4.25), it follows that:

ρσ + µbν
b = (ρ− Υbν

b)σ̂ + µ̂bν
b.

Hence:
ρ(σ − σ̂) + νb(µb + Υbσ̂ − µ̂b) = 0,

since this holds for arbitrary ρ, νb we conclude that: σ̂ = σ,

µ̂b = µb + Υbσ.

Assume now that (4.52) is true for k-forms, we prove that it then holds for k + 1 forms.
Let FA1...Ak+1

∇= (k + 1)µa2...ak+1Y[A1Z
a2
A2 · · ·Zak+1

Ak+1] + ξa1...ak+1Z
a1
A1 · · ·Zak+1

Ak+1
. As in the case

k = 1, let TA ∇= ρXA + νbWA
b be an arbitrary tractor, we calculate the contraction:

FA1...Ak+1T
Ak+1 = ((−1)kρµa1...ak

+ ξa1...akbν
b)Za1

A1 . . . Z
ak
Ak

+ (k + 1)µa2...ak+1Y[A1Z
a2
A2 · · ·Zak+1

Ak+1]ν
bW

Ak+1
b .

The final term requires special attention:

(k + 1)µa2...ak+1Y[A1Z
a2
A2 · · ·Zak+1

Ak+1]ν
bW

Ak+1
b =

1
k!

∑
σ∈Sk+1

ε(σ)µa2...ak+1YAσ(1)Z
a2
Aσ(2)

· · ·Zak+1
Aσ(k+1)

W
Ak+1
b νb.

If σ(1) = k + 1, then the summand is zero, hence:

∑
σ ∈Sk

ε(σ)µa2...ak+1YAσ(1)Z
a2
Aσ(2)

· · ·Zak+1
Aσ(k+1)

W
Ak+1
b νb =

k∑
i=1

∑
σ∈Sk+1

σ(1)=i

ε(σ)µa2...ak+1YAi
Za2
Aσ(2)

· · ·Zak+1
Aσ(k+1)

W
Ak+1
b νb.
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Reorganising the terms in the product, we have that:

µa2...ak+1YAi
Za2
Aσ(2)

· · ·Zak+1
Aσ(k+1)

W
Ak+1
b νb =

= µa2...ak+1YAi
Z
aσ−1(1)
A1 · · ·Z

aσ−1(i−1)
Ai−1

Z
aσ−1(i+1)
Ai+1

· · ·Z
aσ−1(k)
Ak+1

W
Ak+1
b νb,

= µaσ(2)...aσ(k+1)ν
ak+1YAi

Za1
A1 . . . Z

ai−1
Ai−1

Z
ai+1
Ai+1

. . . Zak
Ak
,

= (−1)i−1ε(σ)µa1a2...ai−1ai+1...ak+1ν
ak+1YAi

Za2
A2 . . . Z

ai−1
Ai−1

Z
ai+1
Ai+1

. . . Zak
Ak
.

The final equation comes from the following observation. If we relabel:

µaσ(2)...aσ(k+1) = µā1...āk
;

then for any s ∈ Sk,
µās(1)ās(2)...ās(k) = µaσ(s(1)+1)...aσ(s(k)+1) .

Since σ({2, . . . k}) = J1, k + 1K \ {i}, we can reorder the indices such that we have
µa1...ai−1ai+1...ak+1 if we choose s such that :

s(j) =

σ
−1(j) − 1 if 1 ≤ j < i,

σ−1(j + 1) − 1 if i ≤ j ≤ k.

The signature of this permutation can be determined 1 to be (−1)i−1ε(σ). One can observe
that in the quotient group R∗/R∗

+:

ε(s) =
∏

1≤m<l≤k
s(l) − s(m),

=
∏

1≤m<l<i
σ−1(l) − σ−1(m)

∏
1≤m<i≤l≤k

σ−1(l + 1) − σ−1(m)
∏

i≤m<l≤k
σ−1(l + 1) − σ−1(m+ 1),

=
∏

1≤m<l<i
σ−1(l) − σ−1(m)

∏
1≤m<i<l≤k+1

σ−1(l) − σ−1(m)
∏

i+1≤m<l≤k+1
σ−1(l) − σ−1(m).

This differs from ε(σ−1) by the sign of :

∏
1≤m<i

1 − σ−1(m) ≡ (−1)i−1mod R∗
+.

1. in a rather tedious way
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Overall, we find that :

FA1...Ak+1T
A1 = ((−1)kρµa1...ak

+νbξba1...ak
)Za1

A1 . . . Z
ak
Ak

+kµa2a3...akak+1ν
ak+1Y[A1Z

a2
A2 · · ·Zak

Ak].

This is a k-cotractor, therefore, according to the induction hypothesis we must have: µa2...akbν
b = µ̂a2...akbν̂

b,

(−1)kρ̂µ̂a1...ak
+ ν̂bξ̂a1...akb = (−1)kρµa1...ak

+ ξa1...akbν
b + kΥ[a1µa2...ak]bν

b.

Plugging the first equation into the second and using Equation (4.25), we have

ξ̂a1...akbν
b = νb

ξa2...akb + kΥ[a1µa2...ak]b + (−1)kΥbµa1...ak︸ ︷︷ ︸
kΥ[a1µa2...akb]

 .

The tractor TA being arbitrary, it follows that : µ = µ̂,

ξ̂ = ξ + Υ ∧ µ,

and the result follows by induction.

E.3 Hodge star of wedge product

Proposition E.3.1. Let ξ and Υ be respectively a k-form and a 1-form on a pseudo-
Riemannian manifold (M, g), then :

⋆(Υ ∧ ξ) = (−1)kΥ♯⌟(⋆ξ) (E.2)

Proof. The reason is essentially the fact that contraction and wedge product are adjoint
operators. Precisely, if ξ is k-form and α an arbitrary (k + 1)-form then:

g(Υ ∧ ξ, α) = g(ξ,Υ♯⌟α). (E.3)
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Postponing for now the proof of (E.3), we prove Equation (E.2). For any k + 1-form α:

α ∧ ⋆(Υ ∧ ξ) = g(α,Υ ∧ ξ)ωg
= g(Υ♯⌟α, ξ)ωg
= (Υ♯⌟α) ∧ ⋆ξ.

Since, Υ♯⌟ (α ∧ ⋆ξ)︸ ︷︷ ︸
=0

= (Υ♯⌟α) ∧ ⋆ξ − (−1)kα ∧ (Υ♯⌟ ⋆ ξ) it follows that for any α:

α ∧
(
(−1)kΥ♯⌟ ⋆ ξ

)
= g(α, ⋆(Υ ∧ ξ))ωg.

This property uniquely defines the Hodge star, therefore :

⋆(Υ ∧ ξ) = (−1)kΥ♯⌟ ⋆ ξ.

We prove now (E.3), for instance, using the abstract index notation:

g(Υ ∧ ξ, α) = 1
(k + 1)!g

a1b1 · · · gak+1bk+1(k + 1)Υ[a1ξa2...ak+1]αb1...bk+1 ,

= 1
k!(k + 1)!

∑
σ∈Sk+1

ε(σ)ga1b1 · · · gak+1bk+1Υaσ(1)ξaσ(2)...aσ(k+1)αb1...bk+1 ,

= 1
k!(k + 1)!

∑
σ∈Sk+1

ε(σ)ga1bσ(1) · · · gak+1bσ(k+1)Υa1ξa2...ak+1αb1...bk+1 ,

= 1
k!(k + 1)!

∑
σ∈Sk+1

ε(σ)ga1b1 · · · gak+1bk+1Υa1ξa2...ak+1αbσ−1(1)...bσ−1(k+1)
,

= 1
k!(k + 1)!

∑
σ∈Sk+1

ga1b1 · · · gak+1bk+1Υa1ξa2...ak+1αb1...bk+1 ,

= 1
k!g

a2b2 · · · gak+1bk+1ξa2...ak+1g
a1b1Υa1αb1...bk+1 ,

= g(ξ,Υ♯⌟α).
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Appendix F

USEFUL FORMULAE IN DE-SITTER

SPACETIME

F.1 Connection forms

In appropriate coordinates (1+n)-dimensional de-Sitter space (dS, g) is the « warped »
direct product of the pseudo-Riemannian manifolds (Rψ,−dψ2) and (Sn, dσn), where dσn

is the usual round metric in n dimensions. In other words, dS = R×Sn but the metric is
given by :

g = −dψ2 + f(ψ)dσn, f(ψ) = cosh2 ψ.

The function f is responsible for the « warping » of the direct product. In well-chosen
local frames of dSn that are adapted to the direct sum decomposition of dS into R × Sn,
it is possible to determine the local connection forms in terms of those of dσn on Sn and
−dψ2 on R .

For our purposes we will work on a coordinate patch where ψ can be replaced by the
boundary defining function ρ = 1

2 cosh2 ψ
. We recall that g is then given by :

g = − dρ2

4ρ2(1 − 2ρ) + 1
2ρdσn.

Choosing a local orthonormal frame on Sn and writing θij for the local connection forms
on Sn in this basis then the matrix-valued local connection form for the Levi-Civita
connection of g is:

Lemma F.1.1.

(ωij)1≤i,j≤n+1 =
( 1

1−2ρ − 1
ρ

)
dρ −(1 − 2ρ)ωjθ

− 1
2ρω

i
θ θij − dρ

2ρ

 . (F.1)
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From this it follows that :

□ρ = gab∇a∇bρ = 2ρ(n− 2 + 2ρ(3 − n)), (F.2)

and the local connection form matrix in the same local-frame corresponding to the con-
nection ∇̂ = ∇ + dρ

2ρ is:

Lemma F.1.2.

(ω̂ij)1≤i,j≤n+1

 dρ
1−2ρ −(1 − 2ρ)ωjθ

0 θij

 . (F.3)

Using this one can show by a direct computation that, acting on scalar fields:

Lemma F.1.3.

gab∇̂a∇̂b = −4ρ2(1 − 2ρ)∂2
ρ + 2ρ(2ρ(1 − n) + n)∂ρ + 2ρ∆Sn .
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Titre : Scattering analytique et projectif sur des espaces-temps avec constante cosmologique
positive.

Mot clés : analyse asymptotique, trous noirs Kerr-de Sitter extrême, équation de Dirac, com-

pactifications projectives, équation de Proca, calcul extérieur pour les tracteurs projectifs

Résumé : La thèse comporte deux projets
principaux. En premier lieu, la construction
d’une théorie de scattering analytique pour
des champs de Dirac (massifs ou non) à l’ex-
térieur d’un trou noir de type de Sitter-Kerr ex-
trême : un trou noir en rotation dont les ho-
rizons coïncident pour former un trou noir «
double » ou extrême. Les effets conjugués
de la rotation, la constante cosmologique, et
l’horizon double, se traduisent dans l’expres-
sion de l’opérateur de Dirac par des poten-
tiels de type Coulomb à l’horizon et une per-
turbation de l’opérateur de Dirac sur la sphère.
Dans ces travaux, les méthodes de Nicolas–
Häfner, s’appuyant sur la théorie de Mourre,
sont adaptées pour montrer la complétude
asymptotique. En particulier, une étude pré-
cise de la partie angulaire montre qu’il est pos-
sible de décomposer l’opérateur de façon à

pouvoir appliquer les résultats de T. Daudé,
développés pour traiter le cas d’un trou noir de
Reissner-Nordström. Ce travail a également
donné lieu à une classification complète de la
famille des trous noirs de de Sitter-Kerr et à
une étude et construction détaillée des exten-
sions maximales. Le deuxième projet explore
l’application des outils de la géométrie projec-
tive à l’étude du comportement asymptotique
de champs massifs de spin entier (champs de
« Proca »). Une théorie analogue à celle déve-
loppée par A.R. Gover, E. Latini et A. Waldron
dans le cas de variétés admettant une com-
pactification conforme est obtenue dans le cas
de variétés Einstein projectivement compactes
et asymptotiquement de Sitter, dont en par-
ticulier, un calcul extérieur pour les tracteurs
projectifs donnant lieu à un calcul à la frontière
et des opérateur de solution formelle.

Title: Analytical and projective scattering on spacetimes with positive cosmological constant.

Keywords: asymptotic analysis, extreme Kerr-de Sitter black hole, Dirac equation, projective

compactification, Proca equation, projective exterior tractor calculus

Abstract: The thesis is composed of two prin-
cipal projects in the domain of asymptotic anal-
ysis in General Relativity. First of all, the thesis
details the construction of an analytical scat-
tering theory for Dirac fields (massive or not)
outside an extreme de Sitter-Kerr black hole.
This is a geometric model for a rotating black
hole in a de Sitter type universe for which two
of its horizons coincide, forming a so-called ex-

treme horizon. The conjugated effects of the
rotation, the cosmological constant and the
extreme horizon translate into long-range po-
tentials and a perturbation of the Dirac oper-
ator on the sphere in the expression of the
global Dirac operator. In this work, the meth-
ods used by J.P. Nicolas and D. Häfner, based
on Mourre’s theory, are adapted to this situa-
tion to prove asymptotic completeness. In par-



ticular, a thorough inspection of the angular
part of the operator shows that it is possible to
reduce the problem to a spherically symmet-
ric problem to which the results, developed by
T. Daudé, for a Reissner-Nordström blackhole
can be applied. This work also gives a com-
plete classification of the de-Sitter Kerr fam-
ily and a detailed study and construction of
their maximal analytical extensions. The sec-
ond project explores how to apply tools from
projective differential geometry to the study of

the asymptotic behavior of massive fields with
integer spin (« Proca » fields). The thesis de-
velops, for the case of projectively compact
Einstein asymptotically de-Sitter manifolds, re-
sults that are parallel to those obtained by A.R.
Gover, E. Latini and A. Waldron for confor-
mally compact manifolds. It builds, in particu-
lar, an exterior tractor calculus that leads to a
boundary calculus and formal asymptotic so-
lution operators.
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