u
Equivalents
\triangle THIS WILL NOT BE COVERED IN THE LECTURES IT is a tool you may use to help you find a series to compare to.

IF YOU USE THIS I RECOMMEND YOU APPLY THE LIMIT TEST AFTERWARDS TO CHECK YOU haven't made a mistake

I- Introduction
Consider a series $\left(\sum_{n=0} a_{n}\right)$, once, ingereal, we cannot compute the partial sums $S_{N}=\sum_{n=0}^{N} a_{n}$, we are reduced to tying to deduce convergence of $\sum_{n \geqslant 0} a_{n}$ from properties
of the general term $\left(a_{n}\right)_{n \in \mathbb{N}}$
We lave seen, that if $\sum a_{n}$ converges then $\lim _{n \rightarrow+\infty} a_{n}$, but this is not enough in geneal. (Recall $\sum_{1 \geqslant 1} \frac{1}{n}$ diverges!) what seems to matter is how fast $\left(a_{n}\right)$ is converging to $0 .\left(\frac{1}{n}\right)$ is too slow $\operatorname{but}\left(\frac{1}{n^{\alpha}}\right) \alpha>1$ is fast enough.

We have also learnt that our man tool is to compare series.

Recall the main (and only underlying idea) is:

$$
\text { if } \quad 0 \leqslant a_{n} \leqslant b_{n}
$$

and $\sum b_{n}$ converges then $\sum a_{n}$ converges
$\sum a_{n}$ diverges then $\sum b_{n}$ diverges.
So to compare series we want to compare the behavioun of the general terrine. "Equivalents" give a rigorous meaning to the idea "an" and "bn" have the same behavion when $n \rightarrow+\infty$.

II The Definition.
This is the mathematical part, bear with me, its impatient because it gives you the wiles.

Def We say that two sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are equivalent, if for every $\varepsilon \in \mathbb{R}_{+}^{+}$, there is $n_{0} \in \mathbb{N}$ such that whenever $n \geq n_{0}$, we have the estimate:

$$
\left|a_{n}-b_{n}\right| \leqslant \varepsilon\left|b_{n}\right|
$$

Remark, if $b_{n} \neq 0$ for $n 2 n_{0}$.
this means $\left|\frac{a_{n}}{b_{n}}-1\right| \leqslant \varepsilon$
ie $\quad \lim _{n \rightarrow+\infty} \frac{a_{n}}{b_{n}}=1$

Prop If $\lim _{n \rightarrow+\infty} \frac{a_{n}}{b_{n}}=1$ then $a_{n} \sim b_{n}$

Example: $n^{3}+2 n^{2}+n \underset{n \rightarrow+\infty}{\sim} n^{3}$
Indeed $n^{3}+2 n^{2}+n=n^{3}(1+\underbrace{0}_{\underset{n \rightarrow \infty}{ } \frac{2}{n}+\frac{1}{n^{2}}})$
So $\lim _{n \rightarrow+\infty} \frac{n^{3}+2 n^{2}+n}{n^{3}}=1$.

In general any polynomial expression in n is equivalent to the term of highest degree. ie. $\quad a_{k} n^{k}+a_{k-1} n^{k-1}+\cdots+a_{0} \sim_{n \rightarrow+\infty}^{0} a_{k} n^{k}$

Example 2: If $\left(b_{n}\right)$ converge o to a real $L \neq 0$ then $\quad b_{n} \sim L$

1 If a sequence $\left(a_{n}\right)$ converges to 0 then it is not tine in general that In fact for a sequence to be equivalent to 0 It must be constant and equal to 0 after a finite number of terms.
\Rightarrow Do not replace a sequence converging to 0 by 0 when computing equivalents. Equivalents are all about finding out how $\left(a_{n}\right)$ converges to 0

SHORT VERSION

$$
\Rightarrow \text { Never write } a_{n} \sim \sim_{n \rightarrow+\infty}^{\sim} \text {. }
$$

II - Rules of computation
It turns out that this definition is "good" in the sense that there is an associated calculus. Here are the rules:
(1) $a_{n} \underset{n \rightarrow+\infty}{\sim} b_{n} \Leftrightarrow b_{n} \sim a_{n} \sim+\infty$
(2) $\left\{\begin{array}{l}a_{n} \underset{n \rightarrow+\infty}{\sim} b_{n} \\ b_{n} \underset{n \rightarrow+\infty}{\sim} c_{n}\end{array} \Rightarrow a_{n} \sim c_{n \rightarrow+\infty}^{\sim}\right.$
(3) $a_{n} \sim a_{n \rightarrow+\infty}$

This means that "~" ${ }_{n \rightarrow+\infty}^{\sim}$ behaves like $"=$ ".

Let $\left(a_{n}\right)$ be a sequence then:
(4) $c_{n} \underset{n \rightarrow+\infty}{\sim} d_{n}$ then $a_{n} C_{n} \underset{n \rightarrow+\infty}{\sim} a_{n} d_{n}$

We can multiply equivalents.!!
Now if $\quad a_{n} \sim b_{n}$ and $\quad a_{n} c_{n} \sim a_{n \rightarrow 1}^{\sim} d_{n}$

$$
C_{n} \sim d_{n \rightarrow+\infty} \quad a_{n} d_{n} \sim_{n \rightarrow+\infty}^{\sim} b_{n} d_{n}
$$

so $\quad a_{n} c_{n} \underset{n \rightarrow+\infty}{\sim} b_{n} d n$

We can also deduce that if $a_{n} \neq 0, b_{n}$ to after a finite number of terms then:

$$
a_{n} \sim b_{n \rightarrow+\infty} \quad \Rightarrow \quad \frac{1}{a_{n}} \underset{n \rightarrow+\infty}{\sim} \frac{1}{b_{n}}
$$

Exponential
(5) If $a_{n} \underset{n \rightarrow+\infty}{\sim} b_{n}$ and $\lim _{n \rightarrow \infty} a_{n}-b_{n}=0$ then $e^{a_{n}} \underset{n \rightarrow+\infty}{b_{n}}$

Proof: $\frac{e^{a_{n}}}{e^{b_{n}}}=e^{a_{n}-b_{n}}$
Since $a_{n}-b_{n} \underset{n \rightarrow \infty}{\longrightarrow} \frac{e^{a_{n}}}{e^{b_{n}}} \underset{n \rightarrow+\infty}{ } 1$
So $\quad e^{a_{n}} \underset{n \rightarrow \infty}{\sim} e^{b_{n}}$
(6) Some other functions

- Suppose $\lim _{n \rightarrow+\infty} a_{n}=0\left\{\begin{array}{lc}\ln \left(1+a_{n}\right) & \sim a_{n} \\ \sin \left(a_{n}\right) & \sim a_{n}\end{array}\right.$
- If $\lim _{n \rightarrow+\infty} a_{n}=0$ ard $a_{n} \sim b_{n}$ then $\quad \ln \left(a_{n}\right) \approx \sim+\infty$

1) We cannot in general "take functions" of equivalence.

S Summation of equivalences does not
work.
$\begin{cases}a_{n} \underset{n \rightarrow+\infty}{\sim} b_{n} & \text { then it is NOT in general } \\ c_{n} \underset{n \rightarrow+\infty}{\sim} d_{n} & \text { true that } a_{n}+c_{n} \sim b_{n \rightarrow+\infty}^{\sim}+d_{n}\end{cases}$
egg.

$$
\begin{array}{lll}
a_{n}=n & a_{n} \sim n \\
b_{n}=-n+1 & { }_{n \rightarrow+\infty} \text { BOT } & a_{n}+b_{n} \sim l \\
& b_{n \rightarrow+\infty}^{\sim} & \\
& \sim-n &
\end{array}
$$

DON'T ADD EqUIVALENCES

N-Applications
Thy If $a_{n} v_{n \rightarrow r \infty}$ thea $\sum a_{n}$ converges if and only if $\sum b_{n}$ converges.
N.B. This is just a restatement of the limit test.

Examples $\sum_{n \geqslant 0} \frac{n^{3}+2 n+1}{n^{10}+3 n+1}$ $\frac{n^{3}+2 n+1}{n^{10}+3 n+1} \sim \underset{n \rightarrow+\infty}{\sim} \frac{1}{n^{7}}$ so $\sum \frac{n^{3}+2 n+1}{n^{10}+3 n+1}$ converges because $\sum \frac{1}{n^{7}}$ converges.

$$
\sum_{n \geqslant 1} \frac{\ln \left(1+\frac{1}{n^{3}}\right) \sin \left(\frac{1}{n}\right)}{n^{5}}
$$

Since $\left\{\begin{array}{lll}\frac{1}{n^{3}} & \underset{n \rightarrow+\infty}{\rightarrow 0} & \ln \left(1+\frac{1}{n^{3}}\right) \underset{n \rightarrow+\infty}{\sim} \frac{1}{n^{3}} \\ \frac{1}{n} & \underset{n \rightarrow+\infty}{\sim} & \sin \left(\frac{1}{n}\right) \underset{n \rightarrow+\infty}{\sim} \frac{1}{n}\end{array}\right.$
therefore: $\frac{\ln \left(1+\frac{1}{n^{3}}\right) \sin \left(\frac{1}{n}\right)}{n^{5}} \underset{n \rightarrow+\infty}{\sim} \underbrace{\frac{1}{n^{g}}}_{\text {general }}$ term of a convergent series
Calculate $\lim _{n \rightarrow+\infty}\left(1+\frac{x}{n}\right)^{n}, x \in \mathbb{R} \underline{\text { constant }}$

$$
\left(1+\frac{x}{n}\right)^{n}=e^{n \ln \left(1+\frac{x}{n}\right)}
$$

Since $\frac{x}{n} \underset{n \rightarrow+\infty}{\longrightarrow} \ln \left(1+\frac{x}{n}\right) \underset{n \rightarrow+\infty}{\sim} \frac{x}{n}$

$$
n \ln \left(1+\frac{x}{n}\right) \underset{n \rightarrow \infty}{\sim} x
$$

This means that $\lim _{n \rightarrow+\infty} n \ln \left(1+\frac{x}{n}\right)=x$
in particular $\lim _{n \rightarrow+\infty}\left(n \ln \left(1+\frac{x}{n}\right)-x\right)=0$
therefore; $\left(1+\frac{x}{n}\right)^{n}=e^{n \ln \left(1+\frac{x}{n}\right)} \underset{n \rightarrow+\infty}{\sim} e^{x}$
in otherwords $\lim _{n \rightarrow+\infty}\left(1+\frac{x}{n}\right)^{n} \underset{n \rightarrow+\infty}{\sim} e^{x}$

Notice that although $1+\frac{x}{n} \underset{n \rightarrow+\infty}{\sim} 1$

$$
\left(1+\frac{x}{n}\right)^{n} \underset{n}{n+\infty} 1^{n}=1
$$

\Rightarrow Handle with care

Equivalences can be used to calculate limits.
Proposition
if $a_{n} \underset{n \rightarrow+\infty}{\sim} b_{n}$ and $\lim _{n \rightarrow+\infty} a_{n}=L$ where $L \in \mathbb{R} \cup\{+\infty,-\infty\}$
then $\quad \lim _{n \rightarrow+A} b_{n}=L$.
Proof: Suppose L is finite, then $\left(a_{n}\right)$ is bounded. Let $M>0$ such that $\left|a_{n}\right| \leqslant M$ foal $n \in \mathbb{N}$,
Let $\varepsilon>0$, there is $n_{0} \in \mathbb{N}$ such that whenever $n \geqslant n_{0}, \quad\left|a_{n}-L\right| \leqslant \varepsilon / 2$

There is also n_{1} GIN such that whenever $n 2 n_{1}, \quad\left|b_{n}-a_{n}\right| \leqslant \frac{\varepsilon}{2} \frac{a_{n} l}{M} \leqslant \frac{\varepsilon}{2}$
now $\left|b_{n}-L\right| \leqslant \underbrace{\left|b_{n}-a_{n}\right|}_{\varepsilon / 2}+\underbrace{\left|a_{n}-L\right|}_{\leqslant \varepsilon / 2} \leqslant \varepsilon$
whenever $n \geqslant \max \left(n_{0}, n_{1}\right)$, so $\lim _{n \rightarrow+\infty} b_{n}=L$

If $\lim _{n \rightarrow+\infty} a_{n}=+\infty$
Let $A>0$, there is $n_{0} \in \mathbb{N}$ such that when $n \geqslant n_{0}, a_{n} \geqslant 2 A>0 \quad$ Now one can also find $n_{1} \in \mathbb{N}$, such that $\left|b_{n}-a_{n}\right| \leqslant \frac{\left|a_{n}\right|}{2}$ so when $n \geqslant \max \left(n_{1}, n_{0}\right)$

$$
\begin{aligned}
& b_{n}-a_{n} \geqslant-\frac{\left|a_{n}\right|}{2}=-\frac{a_{n}}{2} \\
& \text { so } \quad b_{n} \geqslant \frac{a_{n}}{2} \geqslant A .
\end{aligned}
$$

The proof is similar if $L=\infty$.
Example $n \sin \left(\frac{1}{n}\right) \underset{n \rightarrow+\infty}{\sim} n \times \frac{1}{n} \underset{n \rightarrow+\infty}{\sim}$
so $\lim _{n \rightarrow+\infty} \mu \sin \left(\frac{1}{n}\right)=1$
(2) $\frac{n^{3}+2 n+1}{3 n^{3}+50 n+225} \sim_{n \rightarrow \infty} \frac{1}{3} \frac{n^{3}}{n^{3}} \sim_{n \rightarrow+\infty} \frac{1}{3}$ $\lim _{n \rightarrow+\infty} \frac{n^{3}+2 n+1}{3 n^{2}+50 n+225}=\frac{1}{3}$.

V -Concluding remarks

- There is a very famous formula, known as Stirling's formula, that gives an equivalent for $n!$

Theorem $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$

This gives a very good approximation of n ! for very large n.

- My advice: if you feel that this makes sense to yon, use it M your daft book (so use the known equivalents above) but check your answer using the limit test

If you think this could be leseful to you and want to practice try to show:
Ex 1: $\frac{n \ln \left(1+\sin ^{2}\left(\frac{1}{n}\right)\right)}{\sin \left(\frac{1}{n}\right)} \sim \sim_{n \rightarrow+\infty}$
E+2: $\quad n^{3} \ln \left(1+\frac{2}{n}\right) \ln \left(1+\frac{3}{n}\right) \underset{n \rightarrow+\infty}{\sim} 6 n$
Ex 3 $\sqrt{n^{3}+2 n^{2}+1} \underset{n \rightarrow+\infty}{\sim} n^{3 / 2}\left(\begin{array}{l}\text { calculate } \\ \lim _{n \rightarrow+\infty} \\ \left.\frac{\sqrt{n^{3}+2 n^{1+c}}}{n^{3 / 2}}\right)\end{array}\right.$
Ext $n(\ln (n+1)-\ln n) \underset{n \rightarrow+\infty}{\sim}$
ExS $e^{-n^{2}+\frac{1}{n}}-e^{-n^{2}} \sim \operatorname{m}_{n \rightarrow \infty} \frac{e^{-n^{2}}}{n}$
Hint:
(use that: if $a_{n} \rightarrow 0$ then $e^{a_{n}}-1 \sim a_{n \rightarrow+\infty}$) Can you see why this ore works? "fi'tbspitals

E+6 $\frac{\left(e^{\frac{1}{n}}-1\right) \sin \frac{1}{n}}{n^{2}+n^{3}} \underset{n \rightarrow+\infty}{\sim} \frac{1}{n^{5}}$

Ex 7 $\ln \left(\ln \left(e+\frac{1}{n}\right)\right) \underset{n \rightarrow+\infty}{\sim} \frac{1}{e^{n}}$
Ex 8 Using l'tlospital's rule: show that

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\tan x}{x}=1, \text { show that } \\
& \qquad \tan \left(\sin \left(\frac{1}{\sqrt{n^{2}+3}}\right)\right) \underset{n \rightarrow+\infty}{\sim} \frac{1}{n}
\end{aligned}
$$

