Vector space basics Def A (real) vector space is a set E endoured with two operations: i turi -> internal addition + -> multiplication by a scalar - CR following long list of conditions completely all that you are used to) Subject to the What remmarise ₹+g EE (the sum of vectors is a vector) Properties of + • There is a frang 2. \vec{O} element such that $\vec{z} + \vec{O} = \vec{z}$ • $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$ for all \vec{z}, \vec{y} • For every $\vec{z} \in \vec{z}$ there is an element $(-\vec{z})$ such that $\vec{z} + (-\vec{x}) = \vec{0}$.

 $\delta \vec{z} + \vec{y} = \vec{y} + \vec{z}$ (commutative) (Mathematicians summarise this $b_j: (E_j +)$ is an abelian group). Properties of . • : 1 × E -> E (1,2) -> 12) saling of a vector. [Inultiplication in IR • $\frac{1}{CR} \left(\mu \cdot \overline{z} \right) = \left(\frac{\lambda \mu}{\mu} \right) \cdot \overline{z}$ CIR CE CIR CEEIR CE CE • $\Lambda \cdot \hat{\chi} = \hat{\chi}$ · $\lambda \cdot (\vec{x} + \vec{y}) = \lambda \cdot \vec{z} + \lambda \vec{y}$ (Detrobutionity) $(\lambda + \mu) \cdot \vec{z} = d\vec{z} + \mu \cdot \vec{z}$ Example 18° with the following operations $(x_1, ..., x_n) + (y_1, ..., y_n) = (x_1 + y_1, ..., x_n + y_n)$ $d(x_1,\ldots,x_n) = (dx_1,\ldots,dx_n).$

Let (Qi) iEI an arbitrary family of vectors. Let (Li)iEI be a family of reals such that di=0 for all iEI except a fourte number. We call Zdice: a linear combination Hus is a finite sum of the vectors to . We define IR to be the set compared of all families (di)iEI arch that di=0 parall but a finite number of indices. It is a vector space, with the operation. $\begin{cases} (\lambda_i)_{i\in I} + (\mu_i)_{i\in I}, \quad (\lambda_i + \mu_i)_{i\in I} \\ \lambda_i \cdot (\lambda_i)_{i\in I} = (\lambda_i)_{i\in I} \end{cases}$

The zero vector is $frall i \in I$. the family such that di=0 Linear maps thansformations. Let E, F be two vector spaces, a map u: E-F is said to be linear if it preserves the vector space structure: ie: frevery zij EE, JER $u(d\vec{x}+\vec{y}) = \lambda u(\vec{x}) + u(\vec{y}).$

Fundamental example Let leilitz be an arbitrary family of vectors (elements of E) then the map:

is linear.

Def D Jf J is onto / sujective then we say that (ei)icI generates E

⊙ Jf € is one-to-one (injective) then

(ei)icit is said to be free.

Theorem () The cardinal of any basis of E is the same and is called the dimension of E. (2) Every vector space has a basis. The dimension represents the number of endependant directions in E Evanple: IRⁿ is of dimension n. It has the canonical basis $e_1 = (1, 0, ..., 0) , e_2 = (0, 1, 0, ..., 0) ...$ $-e_{i}^{*}=(o_{j}...,o_{j},l_{j},o_{j}...,o_{j}),e_{n}-(o_{j}...,o_{j},l_{j})$ 1th position

Matrices and livear maps Let E and F be two finite dimensional vector spaces of dimensions $\int dim E = n$ dim F = mLet (ē, , ēn) be a basis of E (Bi., Bm) be a basis of F. By definition of a basis every vector ZEEE can be written eniquely as a linear combination of the basis elements. $\vec{a} = \sum_{i=1}^{n} \chi_{i} \vec{e}_{i}$ The real numbers (a;) are the coordinates of à in the basis (ê, , ên)

 $u(\vec{x}) = \sum_{i=1}^{n} x_i u(\vec{e_i})$ by $\epsilon \in F$ Therefre linearity. So the map u is completely determined by the vectors relei). Since they are elements of F they can b written uniquely: $u(\vec{e_i}) = \sum_{i=1}^{m} M_{ii} \vec{f_i}$ but ther: $u(\vec{a}) = \sum_{i=1}^{m} \varkappa_i \cdot \left(\sum_{j=1}^{m} M_{ji} \vec{k}_{j} \right)$ $u(\vec{z}) = \sum_{j=1}^{m} \vec{b}_{j} \left(\sum_{i=1}^{n} M_{ji} \chi_{i}^{*} \right)$

So given the two bases we know everything about the transformation wif we know the numbers. (M; i) (i) (i) (i) (i) (i) (i)

We call N=(Mji) (jii) the matrix of re

in the bases $(\vec{e}_{1},...,\vec{e}_{n})$ of \vec{E} and $(\vec{f}_{1},...,\vec{f}_{n})$ of \vec{F} .

 $Jf \vec{z} = \sum_{i=1}^{n} z_i e_i \quad we call$

 $X = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$ the coordinate column ue dos of \vec{x} in the basis $(\vec{e_1}, \dots, \vec{e_n})$.

From the above, we see that the coordinate column vector of u(x) in the basis $(\overline{b_1, \dots, b_m})$ is given by.

the matrix M depends on the choice of bases ME and F.

trample consider $IR^3 = E$ with basis $\vec{L} = (1, 0, 0) \quad \vec{j} = (0, 1, 0) \quad \vec{k} = (0, 0, 1)$ $F = IR^2$ with basis $\vec{e_1} = (l_1 \Rightarrow)$ $e_{2}^{2} = (o_{1} +)$

Define a linear map by:

u(i) = 2ii + 3ii $u(j) = \frac{1}{2}e_2^2$ $u(\vec{h}) = \vec{e_1} - \vec{e_2}$

Mof u in the bases (Tifite) The matur $(\vec{e_1},\vec{e_2})$ of lR^2 is : of IR' and

 $Jf \vec{x} = \vec{i} + 2\vec{j} - \vec{h}$

then the coordinate vector of \vec{z} in the basis $\vec{t}, \vec{j}, \vec{k}$ is $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$

the coordinate vector of $u(\vec{z})$ in the basis (e, ez) of IR2 is $\begin{pmatrix} 2 & 0 \\ 3 & \frac{1}{2} & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$

so $\vec{u}(\vec{a}) = \vec{e_1} + 5\vec{e_2}$

To check we can calculate derectly: $\vec{v}(\vec{x}) = \vec{v}(\vec{t} + 2\vec{J} - \vec{h})$

$$= \vec{u}(\vec{t}) + 2 \cdot \vec{u}(\vec{t}) - \vec{u}(\vec{k})$$

$$= (2\vec{t}_1 + 3\vec{t}_2) + 2 \cdot (\frac{1}{2}\vec{t}_2) - (\vec{t}_1 - \vec{t}_2)$$

$$= \vec{t}_1 + 5\vec{t}_2 \cdot \cdot$$
Remark Matrix multiplication is defined so that this works!

Prop if $u: E \rightarrow F$, $o \cdot F \rightarrow G$
are two linear maps and:

 $\cdot (\vec{t}_1 \dots \vec{t}_n)$ a basis of $E = B_E$

 $\cdot (\vec{b}_1, \dots, \vec{b}_n)$ a basis of $F = B_F$

If M is the matrix of u in the basis (ê, , en) of E and (fin, fin) of F if N is the matrix of 10 in the basis (bi), bm) of F and (gi, ..., gi) of G then the matrix of vou (composition) in the basis (Ei, , en) of E and (gi, , gd) of G is the matrix. N·M. We sometimes conte: Mat (vou) B, BG = Matlo) * Matlu BF,BG BF,BG Matrit of u matrix of 12 In the basis BE of E M the basis BF of F and BG of G and the hasis BG of G