Vector space basics
Def A (real) vector space is a set E endowed with two operations:
\rightarrow internal addition +

\rightarrow multiplication by a scalar $\forall \subset \mathbb{R}$

subject to the following long list of conditions (that summarise completely all that you are used to)
Properties of $+\vec{x}+\vec{y} \in E$ (the sum of vectors is a vector)

- There is a $\overrightarrow{0}$ element such that $\vec{x}+\overrightarrow{0}=\vec{x}$ forany \vec{x}.
- $(\vec{x}+\vec{y})+\vec{y}=\vec{x}+(\vec{y}+\vec{y})$ fo all $\vec{x} \cdot \vec{y}$
- For every $\vec{x} \in E$ there is an element $(-\vec{x})$ such that $\vec{x}+(-\vec{x})=\overrightarrow{0}$.
- $\vec{x}+\vec{y}=\vec{y}+\vec{x} \quad$ (commutative)
(Mathematicians summarise this by: (E, t) is an abelian Properties of . group).
- $\lambda \lambda+E \longrightarrow E$
$(\lambda, \vec{x}) \longmapsto \lambda \vec{x}$) scaling of a vector.

$$
\begin{aligned}
& \text { - } \underbrace{d \cdot}_{\in \mathbb{R}} \underbrace{(\mu \cdot \vec{x})}_{\in E}=\underbrace{\left(\lambda_{\epsilon \in}\right)}_{\in E} \underbrace{\vec{x}}_{C E} \\
& \text { - } 1 \cdot \vec{x}=\vec{x} \\
& \text { - d. } \vec{x}+\vec{y} \text {) }=d \cdot \vec{x}+d \vec{y} \quad \text { (Distributivity) } \\
& \text { - }(\lambda+\mu) \cdot \vec{x}=d \vec{x}+\mu \cdot \vec{x}
\end{aligned}
$$

Example \mathbb{R}^{n} with the following operations

$$
\begin{aligned}
& \left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \\
& . d\left(x_{1}, \ldots, x_{n}\right)=\left(d x_{1}, \ldots, d x_{n}\right) .
\end{aligned}
$$

Let $\left(\vec{\theta}_{i}\right)_{i \in I}$ an arbitrary family of vectors.
Let $\left(n_{i}\right)_{i \in I}$ be a family of reals such that $d_{i}=0$ for all $i \in I$ except a finite number.

We call $\sum_{i e I} d i \vec{e}_{i}$ a linear combination this is a finite sum
of the vectors $\overrightarrow{\theta_{j}}$.
We define $\mathbb{R}^{(I)}$ to be the set composed of
all families $\left(d_{i}\right)_{i \in I}$ such that $d_{i}=0$ fo coll but a finite number of indices.

It is a vector space, with the operation.

$$
\left\{\begin{array}{l}
\left(d_{i}\right)_{i \in I}+\left(\mu_{i}\right)_{i \in I},\left(d_{i}+\mu_{i}\right)_{i \in I} \\
\alpha \cdot\left(d_{i}\right)_{i \in I}=\left(\alpha d_{i}\right)_{i \in I}
\end{array}\right.
$$

The zero vector is the family suchtlat di $=0$ for all $i \in I$.

Linear maps Itransfomations.
Let E, F be two vector spaces, a
$\operatorname{map} u: E \rightarrow F$ is said to be linear if it preserves the vector space structure:
i.e.: for every $\vec{x}, \vec{y} \in E, \quad d \in \mathbb{R}$

$$
u(d \vec{x}+\vec{y})=\frac{\lambda u(\vec{x})+u(\vec{y})}{\epsilon F}
$$

Fundamental example Let $\left(e_{i}\right)_{i E I}$ be an arbitrary family of vectors: (elements of E)
then the map:

$$
\begin{aligned}
\phi: & \mathbb{R}^{(I)} \longrightarrow E \\
& \left(d_{i}\right)_{i \in I} \longrightarrow \sum_{i \in I} d_{i} e_{i}
\end{aligned}
$$

is linear.
Def (1) If Φ is onto/surjective then we say that $\left(e_{i}\right) i \in I$ generates E
(2) If Φ is one-torone (injective) then
(ei)iEI is said to be tee.
(3) If $\bar{\Phi}$ is a one-to-one correspardence (bjective)
then $\left(e_{i}\right) i \in I$ is said to be a BASLS.

Theorem (1) The cardinal of any basis of E is the same and is called the dimension of E.
(2) Every vector space has a basis.

The dimension represents the number of independent directions in E

Example: \mathbb{R}^{n} is of dimension n.
It has the canonical basis

$$
\begin{aligned}
& e_{1}=(1,0, \ldots, 0), e_{2}=(0,1,0 \ldots, 0) \ldots \\
& e_{i}=(0, \ldots, 0,1,0, \ldots 0), e_{n}-(0, \ldots, 0,1) \\
& \text { intporition }
\end{aligned}
$$

Matrices and linear maps
Let E and F be two finite dimensional vector spaces of dimensions $\left\{\begin{array}{l}\operatorname{dim} E=n \\ \operatorname{dim} F=m\end{array}\right.$

Let $\left(\vec{e}_{1},, \vec{e}_{n}\right)$ be a basis of E
$\left(\vec{b}_{1}, ., \vec{f}_{n}\right)$ be a basis of F.
By definition of a basis every vector $\vec{x} \in E$ can be wurten uniquely as a linear combination of the basis elements.

$$
\vec{x}=\sum_{i=1}^{n} \underbrace{x_{i}}_{\in \mathbb{R}} \vec{e}_{i}
$$

The real numbers $\left(x_{i}\right)$ are the coordinates of \vec{x} in the basis $\left(\overrightarrow{e_{1}}, \ldots, \vec{e}_{n}\right)$

There: $u(\underbrace{\vec{x}}_{\in E})=\sum_{i=1}^{n} x_{i} \underbrace{u\left(\overrightarrow{e_{i}}\right)}_{\in F}$ by
linearity. So the map u is completely determined by the vectors $u\left(\overrightarrow{e_{i}}\right)$.

Since they are elements of F they can b written uniquely

$$
u\left(\vec{e}_{i}\right)=\sum_{j=1}^{m} M_{j i} \vec{f}_{j}
$$

but then:

$$
\begin{aligned}
& u(\vec{a})=\sum_{i=1}^{n} x_{i} \cdot\left(\sum_{j=1}^{m} M_{j i} \vec{f}_{j}\right) \\
& u(\vec{a})=\sum_{j=1}^{m} \vec{b}_{j}\left(\sum_{i=1}^{n} M_{j i} x_{i}\right)
\end{aligned}
$$

So given the two bases we know everything about the lansformation u if we know the numbers. $\quad\left(M_{j i}\right)_{(i, i) \in\{1, \ldots,\}^{2}}$

We call $\left.n=\left(M_{j i}\right)_{(j, i}\right)$ the matrix of u in the bases $\left(\overrightarrow{e_{1}}, \ldots, \overrightarrow{e_{n}}\right)$ of E and $\left(\sigma_{1}, \ldots, \vec{b}_{n}\right)$ of F.

We write: $\underbrace{\left(\begin{array}{cccc}M_{11} & \ldots . . & M_{1 n} \\ \vdots & & \\ M_{n 1} & \ldots . . & M_{m n}\end{array}\right)}_{n \text { columns. }}\}$ m rows
If $\vec{x}=\sum_{i=1}^{n} x_{i} e_{i}$ we call
$X=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ the coordinate column basis $\left(\overrightarrow{e_{1}}, \ldots, \overrightarrow{e_{n}}\right)$.

From the above, we see that the coordinate column vector of $u(\vec{x})$ in the basis $\left(\overrightarrow{b_{1}}, \ldots, \overrightarrow{b_{m}}\right)$ is given by.
the matrix M depends an the choice of bases $M E$ and F.

Example Consider $\mathbb{R}^{3}=E$ with basis

$$
\begin{array}{r}
\vec{l}=(1,0,0) \quad \vec{j}=(0,1,0), \vec{l}=(0 \\
F=\mathbb{R}^{2} \text { with basis } \quad \overrightarrow{e_{1}}=(1,0) \\
\overrightarrow{e_{2}}=(0,1)
\end{array}
$$

Define a linear map by:

$$
\begin{aligned}
& u(\vec{l})=2 \overrightarrow{e_{1}}+3 \overrightarrow{e_{2}} \\
& u(\vec{\jmath})=\frac{1}{2} \overrightarrow{e_{2}} \\
& u(\vec{k})=\overrightarrow{e_{1}}-\overrightarrow{e_{2}}
\end{aligned}
$$

The matrix M of u in the bases $(\vec{i}, \vec{j}, \vec{k})$ of \mathbb{R}^{3} and $\left(\overrightarrow{l_{1}}, \overrightarrow{e_{2}}\right)$ of \mathbb{R}^{2} is:

$$
M=\left(\begin{array}{ccc}
2 & 0 & 1 \\
3 & \frac{1}{2} & -1
\end{array}\right)
$$

If $\vec{x}=\vec{l}+2 \vec{j}-\vec{h}$
then the coordinate vector of \vec{x} in the basis $\vec{\imath}, \vec{j}, \vec{k}$ is $\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$
the coordinate vector of $u(\vec{x})$ in the basis $\left(\overrightarrow{e_{1}}, \overrightarrow{e_{2}}\right)$ of \mathbb{R}^{2} is.

$$
\begin{aligned}
& \left(\begin{array}{ccc}
2 & 0 & 1 \\
3 & \frac{1}{2} & -1
\end{array}\right)\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right) \\
& =\binom{1}{5}
\end{aligned}
$$

So $\vec{u}(\vec{a})=\overrightarrow{e_{1}}+\mathrm{Se}_{2}$
To check we can calculate directly:

$$
\vec{u}(\vec{x})=\vec{u}(\vec{\imath}+2 \vec{j}-\vec{l})
$$

$$
\begin{aligned}
& =\vec{u}(\vec{l})+2 \cdot \vec{u}(\vec{j})-\vec{u}(\vec{k}) \\
& =\left(2 \overrightarrow{e_{1}}+3 \overrightarrow{e_{2}}\right)+2 \cdot\left(\frac{1}{2} \overrightarrow{e_{2}}\right)-\left(\overrightarrow{e_{1}}-\overrightarrow{e_{2}}\right) \\
& =\overrightarrow{e_{1}}+S \overrightarrow{e_{2}} .
\end{aligned}
$$

Remark Matrix multiplication is defined so that this works!

Prop if $u: E \rightarrow F, v: F \rightarrow G$ are two linear maps and:

- $\left(\overrightarrow{e_{1}} \ldots, \vec{l}_{n}\right)$ a basis of $E \equiv \beta_{E}$
- $\left(\overrightarrow{b_{1}}, \ldots, \overrightarrow{f_{m}}\right)$ a basis of $F \equiv B_{F}$
- $\left(\overrightarrow{g_{1}}, \ldots, \overrightarrow{g_{d}}\right)$ a basis of $G \equiv B G$

If M is the matrix of u in the basis $\left(\vec{e}_{1}, \ldots, \vec{e}_{n}\right)$ of E and $\left(\overrightarrow{f_{1}}, \ldots, \vec{f}_{n}\right)$ of F if N is the matrix of v in the basis $\left(\vec{b}_{1}, \ldots, \vec{b}_{m}\right)$ of F and $\left(\overrightarrow{g_{1}}, \ldots, \vec{g}_{d}\right)$ of G then the matrix of vol (composition) in the basis $\left(\overrightarrow{e_{1}}, \ldots, \overrightarrow{e_{n}}\right)$ of E and $\left(\vec{g}_{1}, \ldots, \overrightarrow{g d}\right)$ of G is the matrix N.M.

We sometimes conte:

$$
\begin{aligned}
& \operatorname{Mat}(v o u)=\operatorname{Mat}(v) \times \operatorname{Mat}(u) \\
& B_{E}^{B_{G}, B_{G}} \underbrace{B_{F} B_{G}}_{\begin{array}{c}
\text { matrix of } v \\
m \text { the ais } B_{F}
\end{array}} \underbrace{B_{E}, B_{F}}_{\begin{array}{c}
\text { matrix of } u \\
\text { int he basis } B_{E} \text { of } \\
\text { and } B_{G} \text { of } G
\end{array}} \\
& \text { and the paris } B_{G} \text { of } G
\end{aligned}
$$

\qquad

