(B) Integral bounds.

The Let $f: \mathbb{R}_{+}^{\sigma} \longrightarrow \mathbb{R}_{+}$be continuous non-negative decreasing function. Consider the positive series $\sum_{n=1} f(n)$ then
(1) for every clare $N \geqslant M \geqslant 0 \quad N, M \in \mathbb{N}$

$$
\sum_{n=N+1}^{M+1} f(n) \leqslant \int_{N}^{M+1} f(x) d x \leqslant \sum_{n=N}^{M} f(n) \text { (IE) }
$$

(2) $\sum_{n=1}^{+\infty} f(n)<+\infty$ if and only of $\int_{1}^{+\infty} f(x) d x<+\infty$

Proof: see the study of $\sum \frac{1}{n^{p}}$.
if $\sum_{n=1}^{+\infty} f(n)<+\infty$ sending $N \rightarrow+\infty$ in (IE)

$$
\underbrace{\int_{N+1}^{+\infty} f(a) d x}_{A_{N+1}} \leqslant \sum_{n=N+1}^{+\infty} f(n) \leqslant \underbrace{\int_{N}^{+\infty} f(x) d x}_{A_{N}}
$$

This tells us that $S=\sum_{n=1}^{+\infty} f(n)$ is in the interval: $\left[S_{N}+A_{N+1}, \quad S_{N}+A_{N}\right]=I$ Therefore any number in this interval approximates S with error at most $A_{N}-A_{N+1}$.

In particular, if we use $s_{N}^{*}=\frac{A_{N}+A_{N+1}}{2}+S_{N}$ (the midpoint of the interval) this gives a slightly better estimate than S_{N}.

therefore:

$$
S-S_{N}^{*}=S-S_{N}-\frac{A_{N}+A_{N+1}}{2}
$$

$$
-\frac{A_{N}-A_{N+1}}{2} \leqslant S-S_{N}^{+} \leqslant \frac{A_{N}-A_{N+1}}{2}
$$

ie $\left|s-s_{N}^{+}\right| \leqslant \frac{A_{N}-A_{N+1}}{2}$
whereas our best upper bound on $S-S_{N}$ is $0 \leqslant A_{N+1} \leqslant S_{-} S_{N} \leqslant A_{N}$

Example $\sum_{n \geqslant 1} \frac{1}{n^{p}} \quad f(x)=\frac{1}{x^{p}} \quad p>1$

$$
\begin{aligned}
& \int_{N+1^{1}}^{+\infty} \frac{1}{x^{d}} d x \leqslant \sum_{n=N+1}^{+\infty} \frac{1}{n^{p}} \leqslant \int_{N}^{+\infty} \frac{1}{x^{p}} d x \\
& \frac{1}{p-1} \frac{1}{(N+1)^{p-1}} \leqslant \sum_{n=N+1}^{+\infty} \frac{1}{n^{p}} \leqslant \frac{1}{p-1} \frac{1}{N^{p-1}}
\end{aligned}
$$

So $\sum_{n=1}^{1 \infty} \frac{1}{n^{p}}$ is in the interval $\left[\frac{1}{P-1(N+1)^{p-1}}+S_{N}, \frac{1}{P-1} \frac{1+S_{N}}{N^{p}}\right]$
S_{N} estimates $\sum_{n=1}^{+\infty} \frac{1}{n^{p}}$ with enol at most $\frac{1}{p-1} \frac{1}{N^{p-1}}$
Lets take $p=5, N=5$,
S_{s} cortimates $\sum_{n=1}^{+\infty} \frac{1}{n^{p}}$ with precision $\simeq 0,0004$.
S_{S}^{+}estimates $\sum_{n=1}^{10} \frac{1}{n^{p}}$ with precision $\simeq 0,0001$ it converges fast!

