0) Brief recap' on sequences
(1) Real numbers $(\mathbb{R},+, \cdot, \leqslant)$

$$
\underset{\substack{\hat{Q} \\ \text { neal } \\ \mathbb{R} \supset \mathbb{Q} \supset \mathbb{N} \\-\{\underline{\underline{0}}, 1,2,3, \ldots\}}}{ }
$$

R satisfies the least upper bond axiom:
Every non-empty subset A that las an upper band has a least upper bound, written sup A

Ex: $A=\left\{q \in \mathbb{Q}, q^{2}<2\right\}$ admits 2 as un upperbound, there is therefore $x=\operatorname{sep} A$ such that if $\varepsilon>0, \quad x-\varepsilon$ is not an upperband.
Tu the example: \quad sup $A=\sqrt{2} \in \mathbb{R} \backslash \mathbb{Q}$ irrationnel
sup A is the optimal solution to the problem of finding an upper band of A

There are no upperbourds smaller thou sup A Similarly, inf A is the optimal solution to the problem of finding a lower bound of A.
I. inf A and $\sup A$ are not necessarily in the set A.

A sequence ($\left.a_{n}\right)_{n \in \mathbb{N}}$ (with real values) is a map form \mathbb{N} (or some subset $\left.\left[n_{0},+\infty\right) \subset \mathbb{N}\right)$ to \mathbb{R}. For each $n \in \mathbb{N}, a_{n} \in \mathbb{R}$ is the " nth term" of the
Examples: Fibonacci sequence sequence.
(1) $\quad a_{0}=1 \quad a_{0}=1$

For $n \geqslant 0, \quad a_{n+2}=a_{n+1}+a_{n}$.
(2) $\forall n \in \mathbb{N}^{*}, a_{n}=\frac{1}{n} . \quad \mathbb{N}^{*}=\mathbb{N},\{0\}=\{1,2, \ldots\}$

Def let $l \in \mathbb{R}$, we say that a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ converges to l, we conte: $\lim _{n \rightarrow+\infty} a_{n}=l$, if:
$\forall \varepsilon>0, \quad \exists N \in \mathbb{N}^{+}, \quad \forall n \geqslant N, \quad\left|a_{n}-l\right| \leqslant \varepsilon$
"For any enor/tolerance E, are con find some integer N such that for all integers greater then N, a_{n} approximates l to the given error ε."

As an example of how this definition works we will illustrate the proof of $\lim _{n \rightarrow+\infty} \frac{1}{n}$.

For this we will apply our axiom to discuss fins:
Lemma: \mathbb{R} is archimedean
ie Let $0<a<b$ then there is $n \in \mathbb{N}$ such that $n a>b$.
"Ther eave no infinitely small veal numbers" ie. if $0<a<b$, and 1 add a fo itself n times, $\frac{a+\cdots+a}{n}$ for large enough n the result will be greater than b, "
Proof: Let $E=\{n \in \mathbb{N}, n a<b\}$.
and consider $A=\{n a ; n \in E\} \subset \mathbb{R}$
$A=\phi$ because $a=1 . a<b$
since forever $n \in E$ na (b) it follows that
is an upper bound
there is a lowest upper bound sup A
By definition $\sup A-a$ is not an expel band
so there is $n_{0} \in \mathbb{N}$ such that sup A $-a<n_{0} a$
but then $\sup A<\left(n_{0}+1\right) a$, so $\left(n_{0}+1\right) a \notin A$ ie $\left(n_{0}+1\right) a \geqslant b$

Cq $\lim _{n \rightarrow+\infty} \frac{1}{n}=0$.

Proof Let $\Sigma \in \mathbb{R}_{T}^{r}$, without loss of generality
we can choose $0<\varepsilon<1$. Nor since \mathbb{R} is archimedean, $\exists n_{0} \in \mathbb{N}, \quad x_{\xi} \xi \geqslant 1$
but if $n 2 n_{0} \quad n \xi \geqslant n_{0} \varepsilon \geqslant 1$
hence, for all $x>n_{0}, 0<\frac{1}{n} \leqslant c$

$$
\begin{gathered}
0<\frac{1}{n}-0 \leq \varepsilon \\
\frac{\pi}{n} \\
\left|\frac{1}{n}-0\right| \leqslant \varepsilon .
\end{gathered}
$$

therefore $\lim _{n \rightarrow+\infty} \frac{1}{n}=0$.

Another basic but important limit..
Let $q=0$, what is: $\lim _{n \rightarrow+\infty} q^{n}=$?

if	$\|q\|<1$	$\lim _{n \rightarrow+\infty} q^{n}=0$
if	$q=1$	$\lim _{n \rightarrow+\infty} q^{n}=1$
if $q>1$	$\lim _{n \rightarrow+\infty} q^{n}=+\infty$	

if $9 \leqslant-1$ then the sequence las no limit
Partial poof: if $q>0 \quad q^{n}=e^{n \ln q}$
If $0<q<1, \quad \ln q<0$ and so $\lim _{n \rightarrow+\infty} n \ln q=-\infty$ however $\lim _{x \rightarrow-\infty} e^{x}=0$, no $\lim _{n \rightarrow+\infty} q^{n}=0$; etc...

Monotone convergence theorem
Them. Every increasing sep. (ar) with upper bound converges. $\lim _{n \rightarrow+\infty} a_{r}=\sup \left\{a_{n}, n \in \mathbb{N}\right\}$

- Every decreasing sep. (b_{n}) with a lower bound converges.

$$
\lim _{n \rightarrow \infty} b_{n}=\inf \left\{b_{n} ; n \in \mathbb{N}\right\}
$$

$+\left(a_{n}\right)$ increasing, for every $n a_{n+1} \geqslant a_{n}$

* $\left(a_{n}\right)$ decreasing for every $n \quad a_{n+1} \leqslant a_{n}$
"Proof" It follows from the least upper bound axiom but I will just illerotnate the idea on a drawing:

Suppose some sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is increasing and bounded, $\quad A=\left\{a_{n}, n \in \mathbb{N}\right\}$

the terms of the sequence have no choice lat to accumulate near sup A
Fancy mathematical way of saying "consequence" \downarrow
Corollary: An increasing sequence either converges or diverges to infinity:

$$
\left(\forall A>0, \exists N \in \mathbb{N}, \quad \forall n \geqslant N, \quad a_{n} \geqslant A\right)
$$

we cute $\lim _{n \rightarrow+\infty} a_{n}=+\infty$
Exercise can you write what $\lim _{n \rightarrow+\infty} a_{n}=-\infty$ means?
Remark In fact it is suffinent that the monotonic behaviour be attained after a finite number of terms.
Complete example (Example 8 in book)

$$
\left\{\begin{array}{l}
u_{0}=1 \\
u_{n+1}=\sqrt{6+u_{n}}
\end{array}\right.
$$

If $\left(u_{n}\right)$ converges then since $x \longmapsto \sqrt{6+x}$ is a continuous function:

$$
\begin{array}{r}
l=\sqrt{l+6} \quad \Leftrightarrow \quad l^{2}-l-6=0 \\
\\
\Leftrightarrow(l+2)(l-3)=0
\end{array}
$$

so the limit is either -2 or 3 .

Norse need to show that a limit exists.
Fris we note that: a $\longmapsto \sqrt{6+x}$ is an increasing function. Also $\quad u_{0}=1, u_{1}=\sqrt{7} \quad u_{0}<u_{1}$.
and by immediate induction $\left(U_{n}\right)$ is increasing.
so the limit is either $30 r+1 \infty$.
If you can oho titis bounded we are ok.
But $f([0,3]) \subset[0,3] \quad \tau \sigma: \forall n \in \mathbb{N}, u_{n} \in[0,3]$

Some facts that we will use

+ Afunction $f: I \rightarrow \mathbb{R}$ is continuous at $x_{0} \in I$ iff $\lim _{n \rightarrow+\infty} f\left(a_{n}\right)=f(x)$ for every sequence $a_{n} \rightarrow x_{n}$.
+ Let $\quad a_{1} L \in \mathbb{R} \cup\{-\infty, \infty\} \quad f: \mathbb{R} \rightarrow \mathbb{R}$
$\lim _{x \rightarrow a} f(x)=L$ iff for ever sequence $\left(x_{n}\right)_{n}$ sir such that $\lim _{n \rightarrow+\infty} x_{n}=a$,

$$
\lim _{n \rightarrow+\infty} f\left(x_{n}\right)=L
$$

Ingereval we will not apply the definition to calculate limuts but will use these results that you know for bepre: (Phew!)

Let $\left(a_{n}\right)_{n \in \mathbb{N}},\left(b_{n}\right)_{n \in \mathbb{N}}$ be convergent sequences,
Such that: $\lim _{n \rightarrow+\infty} a_{n}=a, \lim _{n \rightarrow+\infty} b_{n}=b$

$$
\begin{aligned}
\lim _{n \rightarrow+\infty}\left(a_{n}+b_{n}\right) & =\lim _{n \rightarrow+\infty} a_{n}+\lim _{n \rightarrow+\infty} b_{n} \\
\lim _{n \rightarrow+\infty}\left(a_{n} b_{n}\right) & =a b \\
\text { if b=10 } \lim _{n \rightarrow+\infty} \frac{a_{n}}{b_{n}} & =\frac{a}{b} \quad \text { etc... }
\end{aligned}
$$

Comparison
Supper that $\lim _{n \rightarrow+\infty} a_{n}$ and $\lim _{n \rightarrow+\infty} b_{n}$ exist (they may be $+\infty$ or $-\infty$).
Then:
If there is $n_{0} \in \mathbb{N}$ such that for any $n \geqslant n_{0}, \quad a_{n} \leqslant b_{n}$
then $\quad \lim _{n \rightarrow+\infty} a_{n} \leqslant \lim _{n \rightarrow+\infty} b_{n}$
"squeeze" theorem (Théorème des gendarmes) If $\left(a_{n}\right),\left(b_{n}\right),\left(c_{n}\right)$ are three sequences:
and (1) $\lim _{n \rightarrow+\infty} a_{n}=\lim _{n \rightarrow+\infty} b_{n}=L \in \mathbb{R}$
(2) There is $n_{0} \in \mathbb{N}$, such that:
for all $n \geqslant n_{0}, \quad a_{n} \leqslant C_{n} \leqslant b_{n}$
then $\lim _{n \rightarrow+\infty} C_{n}$ exists and

$$
\lim _{n \rightarrow+\infty} c_{n}=L
$$

trample: if $\lim _{n \rightarrow+\infty}\left|a_{n}\right|=0$, then $-a_{n}\left|a_{n} \leqslant\left|a_{n}\right|\right.$ So $\quad \lim _{n \rightarrow+\infty} a_{n}=0$.

Algebraic operations and limits
It would be really great if to calculate the limit of an expression we could just split it up into parts that have a known limit and then just apply algebraic operations to the limits This works for finite lines but we sometimes sun into trouble when we ty binclucle
Addition table

$\lim _{n \rightarrow \infty} a_{n}$			
$\lim _{n \rightarrow \infty} b_{\infty}$	$a \in \mathbb{R}$	$+\infty$	$-\infty$
$b \in \mathbb{R}$	$a+b$	$+\infty$	$-\infty$
$+\infty$	$+\infty$	$+\infty$	$-\infty$
$-\infty$	$-\infty$		

The squares IN are indeterminate forms. we cannot extend "conturuoualy" addition to include $+\infty, \infty$
Eg.

$$
\begin{array}{lll}
a_{n}=n & \lim _{n \rightarrow+\infty} a_{n}=+\infty & a_{n}+b_{n}=0 \\
b_{n}=-n & \lim _{n \rightarrow+\infty} b_{n}=-\infty & \text { so } \lim _{n \rightarrow+\infty} a_{n}+b_{n}=0
\end{array}
$$

but if you look at $C_{n}=-n+1$ then $\lim _{n \rightarrow \infty} C_{n}=-\infty$
however, $a_{n}+b_{n}=1$ so $\lim _{n \rightarrow+\infty}\left(a_{n}+b_{n}\right)=1$
Multiplication table

$\lim _{n \rightarrow+\infty} \lim _{b_{n}} a_{n}{ }^{2}$	0	$a>0$	$a<0$	$+\infty$	$-\infty$
0	0	0	0		
$b>0$	0	$a b$	$a b$	$+\infty$	$-\infty$
$b<0$	0	$a b$	$a b$	$-\infty$	$+\infty$
$+\infty$		$+\infty$	$-\infty$	$+\infty$	$-\infty$
$-\infty$		$-\infty$	$+\infty$	$-\infty$	$+\infty$

$\frac{\text { Exande }}{a_{n}}=$

$$
\begin{array}{lll}
a_{n}=\frac{1}{n^{2}} & \lim _{n \rightarrow+\infty} a_{n}=0 \\
b_{n}=n & \lim _{n \rightarrow r^{-\infty}} b_{n}=+\infty & a_{n} b_{n}=\frac{1}{n} \xrightarrow[n \rightarrow+\infty]{\longrightarrow 0}
\end{array}
$$

However:

$$
\begin{array}{lll}
a_{n}=\frac{1}{n} & \lim _{n \rightarrow \infty} a_{n}=0 \\
b_{n}=n & \lim _{n \rightarrow \infty} b_{n}=+\infty
\end{array} \quad a_{n} b_{n}=1 \quad \xrightarrow[m \rightarrow+\infty]{\longrightarrow}=
$$

The indeterminate forms lave to be dealt with on a case by case basis
l'Hospital's rule
A rule that is sometimes invaluable is 1 Hospitals que.
Prop Let f and g be differentiable functions and suppose that $f(a)=g(a)=0$ then $\lim _{x \rightarrow a} \frac{f(a)}{g(a)}$ is indetominate of the form

If $f^{\prime}(a) \neq 0$ and $g^{\prime}(a) \neq 0$ then,

$$
\lim _{x \rightarrow a} \frac{f|x|}{g(x)}=\frac{f^{\prime}(a \mid}{g^{\prime}(a)} .
$$

proof

$$
\begin{array}{r}
\frac{f(x)}{g(x)}=\frac{f(x)-f(a)}{g(x)-g(0)}=\underbrace{\substack{\downarrow^{\prime}(x)-f(a) \\
f^{\prime}(a)}}_{\substack{\prime \prime \\
\underbrace{\prime} \mid}}+\frac{x-a}{g^{\prime}(a)}
\end{array}
$$

$\begin{array}{lll}\text { Example (1) } \lim _{x \rightarrow 0} \frac{\sin (x)}{x} & f(x)=\sin (x) & f(0)=0 \\ g(x)=x & g(0)=0\end{array}$

$$
\begin{aligned}
& f^{\prime}(x)=\cos (x), f^{\prime}(0)=1 \\
& g^{\prime}(x)=1
\end{aligned}
$$

L'Hospital's rule $\Rightarrow \lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$.
Therefe: $\quad \lim _{n \rightarrow+\infty} n \sin \left(\frac{1}{n}\right)=\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{1}{n}\right)}{\frac{1}{n}}$
because

$$
=\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

$$
\lim _{n \rightarrow+\infty} \frac{1}{n}=0
$$

1) Series

A series, written "Ear", is the data consisting of (1) a sequence of urals $\left(a_{n}\right)_{n \in i w}$ known as the general term of the series.
(2) The sequences of partial sums: $S_{N}=\sum_{n=0}^{N} a_{n}$.

We say that a sequence converges if $\left(S_{N}\right)_{N \in}(W)$ converges to a finite limit, and in this are we write $\quad \sum_{n=0}^{+\infty} a_{n}=\lim _{N \rightarrow+\infty} S_{N}$.
Examples: $\quad \sum_{n=1}^{+\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6},\left(\sum_{n \geq 0}(-1)^{n}\right) \begin{gathered}\text { does not } \\ \text { converge }\end{gathered}$.

Special case. Sevies with non-negalive terms Assume that the general term of $\sum_{a \geqslant 0} a_{n}$ is such that: $\forall n \in \mathbb{N}, a_{n} \geqslant 0$.

If follows that the sequence of partial sums is non decreasing and therefore the $\lim _{N \rightarrow+\infty} S_{N}$ exists in $\mathbb{R}_{+} \cup\{+\infty\}$
To prove that such a sequence converges it is necessary and sufficient to show that $\exists M \in \mathbb{R}^{r}, \quad \forall N \in I N, o \leqslant S_{N} \leqslant M$.

Fundamental example: Geometric series.
Let $q>0$. Consider $\sum_{n \geqslant \mathbb{N}} q^{n}$.

$$
q \neq 1
$$

Can me determine the sum?

$$
S_{N+1}=1+q+q^{2}+\cdots+q^{N+1}
$$

magic. $\quad S_{N+1}-1=q S_{N}$

$$
\begin{array}{r}
S_{N}+q^{N+1}-1=q S_{N} \\
(1-q) S_{N}=1-q^{N+1} \\
\text { if } q+1 \quad S_{N}=\frac{1-q^{N+1}}{1-q}
\end{array}
$$

So we can study it directly:

$$
\text { if } 9>1 \Rightarrow S_{N} \rightarrow+\infty \text {. }
$$

if $9<1 \quad S_{N} \rightarrow+\infty=\frac{1}{1-9}$.

$$
\Rightarrow \sum_{n=0}^{+\infty} q^{n}=\frac{1}{1-9} \quad \text { if< } \quad \text { <1 }
$$

E.: $\sum_{n=1}^{+\infty}\left(\frac{1}{2}\right)^{n}=\sum_{n=1}^{1 \infty} \frac{1}{2^{n}}=2$.
if $q=1$ what happens: $\quad S_{N}=N+1 \underset{N \rightarrow \infty}{\longrightarrow+\infty}$.

Criterion for convergence of positive sequences

1. Common error (please don't make it!) If $\left(\sum_{n \geqslant 0} a_{n}\right)$ converges then $\lim _{N \rightarrow+\infty}\left(S_{N}-S_{N-1}\right)=0$ but $S_{N}-S_{N-1}=a_{N}$ so $\lim _{N \rightarrow \infty} a_{N}=0$.

The term general of a convegent series ne cessarily converges to 0 , but this is NOT sufficient; in particular:

$$
\sum_{n=1}^{1 \infty} \frac{1}{n} \text { diverges }
$$

Proof that $\sum_{n \geqslant 2} \frac{1}{n}$ diverges (using the "integral "toot) I can't calculate the partial sums (n) but Ican estimate them!
The map $x \longmapsto \frac{1}{x}$ is decreasing on \mathbb{R}_{t}^{+}, so
for any $x \in[n, n+1], \quad \frac{1}{n+1} \leqslant \frac{1}{x} \leqslant \frac{1}{n}$
Now: $\frac{1}{n+1}=\int_{n}^{n+1} \frac{1}{n+1} d x \leqslant \int_{n}^{n+1} \frac{1}{x} d x \leqslant \int_{n}^{n+1} \frac{1}{n}=\frac{1}{n}$
But if I sum over this inequality:

$$
\begin{aligned}
\sum_{n=1}^{N} \frac{1}{n+1} \leqslant & \underbrace{\sum_{n}^{N} \int_{n}^{n+1} \frac{1}{x} d x}_{n=1} \leqslant \sum_{n=1}^{N} \frac{1}{n} \\
& \int_{1}^{N+1} \frac{1}{x} d x=\ln (N+1)
\end{aligned}
$$

therefore for any $N \in \mathbb{N}, \quad \ln (N+1) \leqslant \sum_{n=1}^{N} \frac{1}{n}$
Since $\lim _{N \rightarrow+\infty} \ln (N+1)=+\infty$

$$
\lim _{N \rightarrow+\infty} \sum_{n=1}^{N} \frac{1}{n}=+\infty
$$

The series diverges tor $+\infty$

Divergence test
If $\left(a_{n}\right)_{n \in \mathbb{N}}$ does not converge to 0 then the series $\left(\sum a_{n}\right)_{n \in i v}$ does not converge

The converse is false.

BASIC comparison theorem For positive series Recall that to show that a positive series converges it is sufficient to show that the partial sums are bounded.

Thu: Spue that there is a constant $M>0$ and a sank no such that frevery $n \geq n_{0}, 0 \leqslant a_{n} \leqslant M b_{n}$
then (1) Ebn converges \Rightarrow Eanconveges
(2) $\sum a_{n}$ diverges $\Rightarrow \sum b n$ diverges

Proof (1) If $\quad 0 \leqslant a_{n} \leqslant M b_{n}$ for $n \geqslant n_{0}$ and ($\left.\sum b_{n}\right) c v$ and (iSbn)cv $\quad 0 \leqslant \sum_{n=n_{0}}^{N} a_{n} \leqslant M \sum_{n=n_{0}}^{N} b_{n} \leqslant M \sum_{n=n_{0}}^{+\infty} b_{n}$ Therefore the partial sums of the positive series $\left(\sum_{n \geqslant 10} a_{n}\right)$ are bounded and so $\sum_{n=n_{0}}^{+\infty} a_{n}<+\infty$. therefore $\sum_{n=0}^{1 \infty} a_{n}=\sum_{n=0}^{n_{0}-1} a_{n}+\sum_{n=n_{0}}^{n=n_{0}} a_{n}<+\infty$
(2) Sinuilar argument.

Remark if $0 \leqslant a_{n} \leqslant M b_{n}$ fun zn. and $\sum_{n=0}^{1 \infty} b_{n}=+\infty$ then this inequality does not teach us anything about $\left(\sum_{n \geq 0} a_{n}\right)$. Similarly convergence of ($\sum_{\text {nero }}$) does not tell us angoling about ($\sum b_{n}$)

The series $\left(\sum_{n \geqslant 1} \frac{1}{n^{p}}\right), p \in \mathbb{R}$
We will now increase our population of examples through the study of the series $\left(\sum_{n 2} \frac{1}{n^{p}}\right)$.
This will illustrate some of the techniques
Case 1 $\quad p \leqslant 0$
If $p \leqslant 0$ then the sequence $\left(\frac{1}{n^{p}}\right)_{n \in \mathbb{N}^{k}}$ does not converge to zero, by the Divergence test, $\left(\sum_{\infty \geqslant 1} \frac{1}{n^{p}}\right)$ does not converge. Since they are positive series they diverge to $+\infty$.

That was easy! So we restrict to $p>0$

We already know from last lecture that $\sum_{n \geqslant 1} \frac{1}{n}$ diverges to $+\infty$. We shall now try to apply our Comparison theorem to study some cases.

Consider the function f defined by $f(p)=\frac{1}{n^{p}}$ where $n \geqslant 1$ is a fixed integer.

$$
=e^{-p \ln n}
$$

Since $f^{\prime}(p)=-(\ln n) \frac{1}{n^{p}}$, since $n \geq 1$,
$f^{\prime}(p) \leqslant 0$ and so the function f is decreasing.
In particular if $p \leqslant 1$ then

$$
\begin{array}{ll}
& f(1) \leqslant f(p) \\
i e . \quad & \frac{1}{n} \leqslant \frac{1}{n^{p}}
\end{array}
$$

Since n was fixed lat arbiluary this shows
that for all $n \geq 1$, and all $0<p \leqslant 1$

$$
0 \leqslant \frac{1}{n} \leqslant \frac{1}{n^{p}}
$$

Since we know that $\sum_{n=0}^{1 \infty} \frac{1}{n}=+\infty$, by the Comparison theorem this shows that:

When $0<p \leqslant 1, \quad \sum_{n=0}^{+\infty} \frac{1}{n^{p}}=+\infty$

However, we learn nothing about the case $p>1$. For this we need another argument...

The case $p>1$
We shall repeat the argument me used for $\sum \frac{1}{n}$. The idea is to compare the partial sums $\sum_{n=1}^{N} \frac{1}{n^{P}}$, which we don't know how to compute, to $\int_{1}^{N} \frac{1}{x^{\rho}} d x$, which we do. "we coil thy to squeeze $\frac{1}{x^{p}}$ " between two terms of our sum". For this we consider now for $p>1$ fixed but arbitrary the function f defined by $f(x)=\frac{1}{x^{p}}=x^{-p}$ $(x>0)$, then $f^{\prime}(x)=-p x^{-(p+1)}$, so f is decreasing on $(0,+\infty)=\mathbb{R}_{+}^{*}$.

In particular, for any $x \in[n, n+1]$, where $n \geqslant 1$ is an arbitrary integer, we have:

$$
\frac{1}{(n+1)^{p}} \leqslant \frac{1}{x^{p}} \leqslant \frac{1}{n^{p}}
$$

Integrating from n to $n+1$ we find:

$$
\underbrace{\int_{n}^{n+1} \frac{1}{(n+1)^{p}} d x}_{=\frac{1}{(n+1)^{p}}} \leqslant \int_{n}^{n+1} \frac{1}{x^{p}} d x \leqslant \underbrace{\int_{n}^{n+1} \frac{1}{n^{p}} d x}_{=\frac{1}{n^{p}}}
$$

so: $\quad \frac{1}{(n+1)^{p}} \leqslant \int_{n}^{n+1} \frac{1}{x^{p}} d x \leqslant \frac{1}{n^{\rho}}$
for every $n \geq 1$

Now we sum these inequalities up to $N \in \mathbb{N}$

$$
\sum_{n=1}^{N} \frac{1}{(n+1)^{p}} \leqslant \sum_{n=1}^{N} \int_{n}^{n+1} \frac{1}{x^{p}} d x \leqslant \sum_{n=1}^{N} \frac{1}{n^{p}}
$$

But: $\sum_{n=1}^{N} \int_{n}^{n+1} \frac{1}{x^{p}} d x=\int_{1}^{N+1} \frac{1}{x^{p}} d x$.

Therefore

$$
\sum_{n=1}^{N} \frac{1}{(n+1)^{p}} \leqslant \int_{1}^{N+1} \frac{1}{x^{p}} d x \leqslant \sum_{n=1}^{N} \frac{1}{n^{p}}
$$

Now:

$$
\begin{aligned}
\int_{1}^{N+1} \frac{1}{x^{p}} d x & =\left[\frac{1}{(1-p)} \frac{1}{x^{p-1}}\right]_{1}^{N+1} \\
& =\frac{1}{(1-p)} \frac{1}{(N+1)^{p-1}}+\frac{1}{p-1}
\end{aligned}
$$

Since $p>1, \lim _{N \rightarrow-\infty} \frac{1}{(N+1)^{p-1}} \underset{N \rightarrow+\infty}{ } 0$ we see that the middle term has a finite limit when $N \rightarrow+\infty$.

It fellows now from the first inequality that

$$
\sum_{n=1}^{N} \frac{1}{(n+1)^{p}}=\sum_{n=2}^{N+1} \frac{1}{n^{p}}=\sum_{n=1}^{N+1} \frac{1}{n^{p}}-1
$$

is bounded. Therefore as it is a positive series

$$
\sum_{n=1}^{+\infty} \frac{1}{n^{p}}<+\infty \quad \text { when } p>1
$$

Classical tests fo convergence of posithe series

In general since we cannot calculate partial sens we will use our comparison theorem and known examples to infer convergence or divergence of arbinory nositice series. The fellourng tests summarise the most used arguments.

Test 1: The limit test
consider two leventually) positive series $\left(\sum a_{n}\right),\left(\Sigma b_{n}\right)$ suppose that:

$$
\lim _{n \rightarrow+\infty} \frac{a_{n}}{b_{n}}=L \in \mathbb{R}_{+} \cup\{\infty\}
$$

Then if $L<+\infty$ then $\sum a_{n} c v$ if $\sum b_{n} c v$ if $L=+\infty$, if $\sum b_{n}$ diverges then no does $\sum a_{n}$
Remark if $L>0$ and finite then $\sum a_{n} C V$ iff $\sum b_{n}$ cu.

Example: $\sum_{n \geq 1} \sin \left(\frac{1}{n^{2}}\right)$. This is a positive series and so we will compare with $\sum_{n=1} \frac{1}{n^{2}}$ using the limit test: $\quad a_{n}=\sin \left(\frac{1}{n^{2}}\right) \quad b_{n}=\frac{1}{n^{2}}$

$$
\begin{gathered}
\frac{a_{n}}{b_{n}}=n^{2} \sin \left(\frac{1}{n^{2}}\right) \\
\lim _{n \rightarrow+\infty} \mu^{2} \sin \left(\frac{1}{n^{2}}\right)=\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
\end{gathered}
$$

therefore since $\sum_{n 21} \frac{1}{n^{2}}$ converges $\sum_{n 21} \operatorname{sn}\left(\frac{1}{n^{2}}\right)$ converges by the limit test.

The next tests follow by comparing to geometric series

Test 2: Cauchy's root test
Consider a positive series $\sum_{n \in \mathbb{N}} a_{n}$
Suppose that $\lim _{n \rightarrow+\infty} a_{n} \frac{1}{n}=p$
If $\rho<1$ then the series converges.
If $\rho>1$ then the series diverges
If $\rho=1$ the test is inconclusive.
Remark Try to apply this test to $\sum \frac{1}{n^{2}}$ and $\sum \frac{1}{n}$
to see why the case $\rho=1$ is inconclusive.
Remark Note the ressmblance between these cases ard that we found when studying $\sum_{n=1} \frac{1}{9^{n}} \quad q>0$

Test 3 D'Alembert's ratio test
Considu a (eventually) positive series
Suppose $\lim _{n \rightarrow+\infty} \frac{a_{n+1}}{a_{n}}=\rho \quad$ then:

+ if $\rho<1$ the series converges
t if $\rho>1$ the series diverges
x if $\rho=1$ the test is inconclusive.

Example $\sum_{n \geqslant 0} \frac{1}{n!} \quad a_{n}=\frac{1}{n!}$

$$
\frac{a_{n+1}}{a_{n}}=\frac{n!}{(n+1)!}=\frac{1}{n+1} \underset{n \rightarrow+\infty}{ } 0
$$

Therefore by D'Alembert's ratio test $\sum_{n \geq 0} \frac{1}{n!}$ converges.

Examples of application of our criterion.

$$
x\left(\sum_{n \geq 0} n\right),\left(\sum_{n \geq 0} n^{2}\right)\left(\sum_{n \geq 1} n \sin \left(\frac{1}{n}\right)\right)
$$

What can be said about these series?
THEY DIVERGE
why: The general term does not converge to 0 .
\Rightarrow Begin you study of a series by first checking that it doesn't grossly diverge.

If the geneal term converges to 0 , then now we lave to start some work:

Ex 1: $\left(\sum_{n \geq 3} \frac{1}{n(n-1)(n-2)}\right) \rightarrow \begin{gathered}\text { general term converges } \\ \text { to } 0\end{gathered}$
The limit test (compare with $\sum \frac{1}{n^{3}}$) show that this series converges.

It turns out we can in fact calculate this sum it is a telescopic series.

Since the general term is a rational function we can do a partial fraction decomposition.

$$
\begin{aligned}
\frac{1}{n(n-2)(n-1)} & =\frac{1}{2 n}+\frac{1}{2(n-2)}-\frac{1}{n-1} \\
& =\frac{1}{2}\left(\frac{1}{n}+\frac{1}{(n-2)}-\frac{2}{n-1}\right)
\end{aligned}
$$

Therefore: for $N \geqslant 3$
Finite so lon separate

$$
\begin{aligned}
S_{N} & =\frac{1}{2} \sum_{n=3}^{N}\left(\frac{1}{n}+\frac{1}{(n-2)}-\frac{2}{n-1}\right) \\
& =\frac{1}{2}\left(\sum_{n=3}^{N} \frac{1}{n}+\sum_{n=3}^{N} \frac{1}{n-2}-2 \sum_{n=3}^{N} \frac{1}{n-1}\right) \\
& =\frac{1}{2}\left(\sum_{n=3}^{N} \frac{1}{n}+\sum_{n=1}^{N-2} \frac{1}{n}-2 \sum_{n=2}^{N-1} \frac{1}{n}\right) \\
& =\frac{1}{2}\left(-\frac{1}{2}+\frac{1}{N}-\frac{1}{N-1}+1\right)
\end{aligned}
$$

$$
=\frac{1}{4}\left(1-\frac{1}{2 N(N-1)}\right) \underset{N \rightarrow+\infty}{\longrightarrow} \frac{1}{4}
$$

therepre $\sum_{n=3}^{+\infty} \frac{1}{n(n-1)(n-2)}=\frac{1}{4}$

Remark: This computation also proves convergence.
Ex 2: $\left(\sum_{n \geqslant 3} \frac{2^{n}+3^{n}}{7^{n}}\right)$
This is a slight adaptation of a geometric series Since $\begin{array}{r}\frac{2^{n}+3^{n}}{7^{n}}=\left(\frac{2}{7}\right)^{n}+\left(\frac{3}{7}\right)^{n} \\ <1\end{array}$

So it is the sum of two convergent geometric series At therefore converges.

$$
\begin{aligned}
\sum_{n=3}^{1+} \frac{2^{n}+3^{n}}{7^{n}} & =\sum_{n=3}^{+\infty}\left(\frac{2}{7}\right)^{n}+\sum_{n=3}^{+\infty}\left(\frac{3}{7}\right)^{n} \quad\left\{\begin{array}{l}
\text { no worries } \\
\text { here as } \\
\text { everything } \\
\text { os positive }
\end{array}\right. \\
& =\sum_{n=0}^{+\infty}\left(\frac{2}{7}\right)^{n+3}+\sum_{n=0}^{1+0}\left(\frac{3}{7}\right)^{n+3}
\end{aligned}
$$

Therefre: $\sum_{n=3}^{+\infty} \frac{2^{n}+3^{n}}{7^{n}}=\left(\frac{2}{7}\right)^{3}\left(\frac{1}{1-\frac{2}{7}}\right)+\left(\frac{3}{7}\right)^{3}\left(\frac{1}{1-\frac{3}{7}}\right)$

$$
=\left(\frac{2}{7}\right)^{3} \frac{7}{5}+\left(\frac{3}{7}\right)^{3}\left(\frac{7}{4}\right)
$$

$$
=\frac{8}{49} \times \frac{1}{5}+\frac{27}{49} \times \frac{1}{4}
$$

$=\frac{1}{49}\left(\frac{32+135}{20}\right)$

$$
=\frac{1}{49}\left(\frac{167}{20}\right)=\frac{167}{980}
$$

These are a few rare cases where we can evaluate the sum immediately, in general we can only talk about convergence.

Example $3\left(\sum_{n \geqslant 1} \ln \left(1+\frac{1}{n^{2}}\right)\right)$ converges by the
Example 4

$$
\begin{aligned}
& \left(\sum_{n \geq 1}\left(\frac{1+\sin n}{n^{2}}\right)\right) \\
& 0 \leqslant \frac{1+\sin n}{n^{2}} \leqslant \frac{2}{n^{2}}
\end{aligned}
$$

the limit test doesn't work but:

So by the comparison theorem $\sum_{n \geqslant 1}\left(\frac{1+\sin n}{n^{2}}\right)$ converges.
Example S $\sum_{n=0}^{+\infty} \frac{(2 n)!}{(n!)^{2}}$
Lets ty Dialembert's test

$$
\frac{(2(n+1))!}{\left(n+1!!^{2}\right.}+\frac{(n!)^{2}}{(2 n)!}=\frac{(2 n+1)(2 n+2)}{(n+1)^{2}} \underset{n \rightarrow+\infty}{\rightarrow} 4>1
$$

So $\sum_{n=0}^{1 \infty} \frac{(2 n)!}{(n!)^{2}}$ diverges

General cuthre Stirlings formula. $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$
Example6 $\left(\sum_{n \geqslant 1} \frac{2^{n+1}}{n^{n}}\right) \rightarrow$ noot test itce vatio $\begin{gathered}\text { converges to } 1 .\end{gathered}$

$$
\begin{aligned}
\lim _{n \rightarrow+\infty}\left(\frac{2^{n+1}}{n^{n}}\right)^{\frac{1}{n}} & =\lim _{n \rightarrow \infty} e^{\frac{(n+1)}{n} \ln 2-\ln n} \\
& =0
\end{aligned}
$$

Therefore $\sum_{n \geqslant 1} \frac{2^{n+1}}{n^{n}}$ converges. by (Canchy's') nool test
Example $7 \sum_{n=1}^{\infty} \frac{1}{\pi^{n}-n^{\pi}}$

$$
\begin{aligned}
\pi^{n}-n^{\pi} & =e^{n \ln \pi}-e^{\pi \ln n} \\
& =e^{n \ln \pi}\left(1-e^{\pi \ln n-n \ln \pi}\right) \\
& =\underbrace{e^{n \ln \pi}(1}_{+\infty}-\underbrace{e^{-n \ln \pi\left(1-\pi \frac{\ln n}{n}\right)}}_{0})
\end{aligned}
$$

The general term converges to 0 Solution (1)

$$
\begin{aligned}
\left(\pi^{n}-n^{\pi}\right)^{\frac{1}{n}} & =e^{-\frac{1}{n} \ln \left(\pi^{n}-n^{\pi}\right)} \quad \text { root test } \\
& =e^{-\ln \pi}+\ln \left(1-e^{-n \ln \pi(1-\pi \ln n)}\right)
\end{aligned}
$$

$$
\text { so } \lim _{n \rightarrow+\infty}\left(\pi^{n}-n^{n}\right)^{-\frac{1}{n}}=\frac{1}{\pi}<1
$$

Since $\sum_{n \geqslant 1} \frac{1}{\pi^{n}}$ converges so does $\sum_{n \geqslant 1} \frac{1}{\pi^{n}-n^{\pi}}$.
Every case is different: practice

$$
\begin{aligned}
& \frac{\pi^{n}}{\pi^{n}-n^{\pi}}=\frac{1}{1-\frac{n^{\pi}}{\pi^{n}}} \\
& \left.\frac{n^{\pi}}{\pi^{n}}=e^{\pi \ln n-n \ln \pi}=e^{\pi n(\ln n}-\ln \pi\right) \\
& \longrightarrow 0 \\
& \lim _{n \rightarrow+\infty} \frac{\pi^{n}}{\pi^{n}-n^{\pi}}=1 \text { ie } \frac{1}{\pi^{n}}{\underset{n \rightarrow+\infty}{2} \frac{1}{\pi^{n}-n^{\pi}} \text { in }}_{1}
\end{aligned}
$$

Approximating the sum of a positive series

Ingeneral, we cannot determine a facula for the sum of a series. Although we cannot find an expression for the partial sums we can evaluate them numerically.

Since, by definition, $\lim _{N \rightarrow+\infty} \sum_{n=0}^{N} a_{n}=\sum_{n=0}^{+\infty} a_{n}=s$ we know that $\lim _{N \rightarrow+\infty}\left|\Delta-\Delta_{N}\right|=\left|\sum_{n-N+c}^{+\infty} a_{n}\right| \underset{n \rightarrow+\infty}{\longrightarrow 0}$
so for lange enough N we can use S_{N} as an approximation for s to a given precision $\varepsilon>0$.

But to do this we need to determine what "N large enough means"

Therefore we would like to estimate $\left|\sum_{n=N+1}^{+\infty} a_{n}\right|$
for large N. In this lecture we will resent two methods for this.
(A) Geometric bounds

If $\sum_{n=1} \frac{1}{9^{n}}$ is a convergent geometric series we can calculate its "tail" or "remainder".

$$
\sum_{n=N+1}^{+\infty} \frac{1}{q^{n}}=\frac{q^{N+1}}{1-q}
$$

\leftarrow you should know how to find this fast

Whist it is not particularly useful to use the partial sums to estimate the sum in this case (we know it explicitly!) It can be useful for getting bonds on sums that we cart calculate but that we can compare to geonetie series.

This includes series to which we can apply the root or ratio tests. To see this let us study the proof of this test.

Proof of the ratio test in the case $\frac{a_{n+1}}{a_{n}} \longrightarrow \rho<1$ Suppose $\lim _{n \rightarrow+\infty} \frac{a_{n+1}}{a_{n}} \rightarrow \rho<1 \quad a_{n} \geq 0$ fralln \mathbb{N}.

Choose a number $\rho<q<1$ and note that there is $N_{0} \in \mathbb{N}$ such that
for $n \geqslant N_{0} 0 \leqslant \frac{a_{n+1}}{a_{n}} \leqslant 9$
then foal $x \geqslant N_{0}<a_{n+1} \leqslant q a_{n}$
hence fo all $n \in \mathbb{N}, 0 \leq a_{N_{0}+n} \leq 9^{n} a_{N_{0}}$ (a)
This concludes the proof of the test but we car exp bit For any $N \geqslant N_{0}$ further

$$
\begin{gathered}
0 \leqslant \sum_{n=N+1}^{+\infty} a_{n}=\sum_{n=N+1-N_{0}}^{+\infty} a_{n+N_{0}} \leqslant \sum_{n=N-N_{0}+1}^{+\infty} r^{n} a_{N_{0}} \\
0 \leqslant \sum_{n=N+1}^{+\infty} a_{n} \leqslant \frac{q^{N-N_{0}+1}}{1-q} a_{N_{0}}
\end{gathered}
$$

2cloices in this formula $\rightarrow 9$

$$
\rightarrow \quad N_{0}
$$

Example: $\sum_{n \geq 1} \frac{1}{n!}, \quad \frac{a_{n+1}}{a_{n}}=\frac{1}{n+1} \quad$ tate $q=\frac{1}{2}$
we see that for all $n \geq 1 \quad \frac{a_{n+1}}{a_{n}} \leqslant \frac{1}{2}$, ie $N_{0}=0$
so we can apply the above if $N \geqslant 1$

$$
\sum_{n=N+1}^{+\infty} \frac{1}{n!} \leqslant\left(\frac{1}{2}\right)^{N} \times \frac{1}{1-\frac{1}{2}} \times 1=\frac{1}{2^{N-1}}
$$

we could in this case get a much better error estimate if take $q=\frac{1}{N+1}$ then $N_{0}=N$ and we have

$$
\sum_{n=N+1}^{+\infty} \frac{1}{n!} \leqslant \frac{1}{N!} \frac{1}{N+1} \frac{1}{1-\frac{1}{N+1}}=\frac{1}{N!N}
$$

$N \cdot B$ In the text book, they calculate $\sum_{n=N}^{+\infty} \frac{1}{n!}$ so using the above estimate $\sum_{n=N}^{+\infty} \frac{1}{n!}=\frac{1}{N}+\sum_{n=N+1}^{+\infty} \frac{1}{n^{!}} \leqslant \frac{N+1}{N_{n}^{\prime}, N}$

Remark: The proof of the root test is almost identical to this andore can device similar bounds:
Proposition
(1) Take $p<q<1$, find N_{0} such that for all $n \geq$ No, $\quad\left(a_{n}\right)^{\frac{1}{n}}<q$, then $a_{n}<q^{n}$ if $n \geqslant n_{0}$ so for $N \geq N_{0}, 0 \leqslant \sum_{n=N+1}^{+\infty} a_{n} \leqslant \sum_{n=N+1}^{+\infty} q^{n}=\frac{q^{N+1}}{1-q}$

Example $\sum_{n \rightarrow 0}^{+\infty} \frac{2^{n+1}}{n^{n}} 0 \leq\left(\frac{2^{n+1}}{n^{n}}\right)^{\frac{1}{n}}=\frac{2\left(2^{\frac{1}{n}}\right.}{n}$ decreases to 1 $\leqslant \frac{4}{n} \notin \substack{\text { easier to } \\ \text { estimate }}$
lets take $q=\frac{4}{N}, \frac{4}{n} \leqslant \frac{4}{N}=q \Leftrightarrow n \geqslant N=N_{0}$

Hence,

$$
\sum_{n=N+1}^{+\infty} a_{n} \leqslant 4\left(\frac{4}{N}\right)^{N} \frac{1}{N-1}
$$

(B) Integral bounds.

The Let $f: \mathbb{R}_{+}^{\sigma} \longrightarrow \mathbb{R}_{+}$be continuous non-negative decreasing function.

Consider the positive series $\sum_{n=1} f(n)$ then
(1) for every clare $0 \leqslant N \leqslant M \quad N, M \in \mathbb{N}$

$$
\sum_{n=N+1}^{M+1} f(n) \leqslant \int_{N}^{M+1} f(x) d x \leqslant \sum_{n=N}^{M} f(n) \text { (IE) }
$$

(2) $\sum_{n=1}^{+\infty} f(n)<+\infty$ if and only of $\int_{1}^{+\infty} f(x) d x<+\infty$

Proof: see the study of $\sum \frac{1}{n^{p}}$.
if $\sum_{n=1}^{+\infty} f(n)<+\infty$ sending $N \rightarrow+\infty$ in (IE)

$$
\underbrace{\int_{N+1}^{+\infty} f(a) d x}_{A_{N+1}} \leqslant \sum_{n=N+1}^{+\infty} f(n) \leqslant \underbrace{\int_{N}^{+\infty} f(x) d x}_{A_{N}}
$$

This tells us that $S=\sum_{n=1}^{+\infty} f(n)$ is in the interval: $\left[S_{N}+A_{N+1}, \quad S_{N}+A_{N}\right]=I$ Therefore any number in this interval approximates S with error at most $A_{N}-A_{N+1}$.

In particular, if we use $s_{N}^{*}=\frac{A_{N}+A_{N+1}}{2}+S_{N}$ (the midpoint of the interval) this gives a slightly better estimate than S_{N}.

therefore:

$$
S-S_{N}^{*}=S-S_{N}-\frac{A_{N}+A_{N+1}}{2}
$$

$$
-\frac{A_{N}-A_{N+1}}{2} \leqslant S-S_{N}^{+} \leqslant \frac{A_{N}-A_{N+1}}{2}
$$

ie $\left|s-s_{N}^{+}\right| \leqslant \frac{A_{N}-A_{N+1}}{2}$
whereas our best upper bound on $S-S_{N}$ is $0 \leqslant A_{N+1} \leqslant S_{-} S_{N} \leqslant A_{N}$

Example $\sum_{n \geqslant 1} \frac{1}{n^{p}} \quad f(x)=\frac{1}{x^{p}} \quad p>1$

$$
\begin{aligned}
& \int_{N+1^{1}}^{+\infty} \frac{1}{x^{d}} d x \leqslant \sum_{n=N+1}^{+\infty} \frac{1}{n^{p}} \leqslant \int_{N}^{+\infty} \frac{1}{x^{p}} d x \\
& \frac{1}{p-1} \frac{1}{(N+1)^{p-1}} \leqslant \sum_{n=N+1}^{+\infty} \frac{1}{n^{p}} \leqslant \frac{1}{p-1} \frac{1}{N^{p-1}}
\end{aligned}
$$

So $\sum_{n=1}^{1 \infty} \frac{1}{n^{p}}$ is in the interval $\left[\frac{1}{P-1(N+1)^{p-1}}+S_{N}, \frac{1}{P-1} \frac{1+S_{N}}{N^{p}}\right]$
S_{N} estimates $\sum_{n=1}^{+\infty} \frac{1}{n^{p}}$ with enol at most $\frac{1}{p-1} \frac{1}{N^{p-1}}$
Lets take $p=5, N=5$,
S_{s} cortimates $\sum_{n=1}^{+\infty} \frac{1}{n^{p}}$ with precision $\simeq 0,0004$.
S_{S}^{+}estimates $\sum_{n=1}^{10} \frac{1}{n^{p}}$ with precision $\simeq 0,0001$ it converges fast!

IV - Series with arbitnary general term

1. It is no longer sufficient to show that the partial sums are bounded.

The divergence test still applies.

* $\sum_{n \in \mathbb{N}}(-1)^{n}$ does not converge because the general term does not converge to 0 .
N.B. Some people use quite liberally the term diverge and will say $\sum_{n \in i \omega}(-1)^{n}$ diverges and $\sum_{n \geqslant 1} \frac{1}{n}$ diverged to infinity,
Iprefer to reserve the term "diverge" for series that diverge to $\pm \infty$

what we notice is then that;
$\left(S_{2 N}\right)$ is increasing and $\left(S_{2 N+1}\right)$ is decreasing

$$
\left\{\begin{array}{l}
S_{2 N+2}-S_{2 N}=\frac{1}{2 N+1}-\frac{1}{2 N+2} \geq 0 \\
S_{2 N+3}-S_{2 N+1}=\frac{-1}{2 N+2}+\frac{1}{2 N+3}<0
\end{array}\right.
$$

Additionally, $\quad S_{2 N+1}-S_{2 N}=\frac{1}{2 N+1}>0$
and $\lim _{N \rightarrow+\infty} S_{2 N+1}-S_{2 N}=0$
$\left(S_{2 N}\right)$ and $\left(S_{2 n+1}\right)$ are ADJACENT SEQUENCES,
$\stackrel{\left.\substack{\text { increasing } \\ \downarrow \\ S_{2 N}} S_{2 N+1}\right) \text { decreasing }}{ } \leqslant S_{2 N 11} \leqslant S_{1}$ frail $N \in \mathbb{N}$
\Rightarrow (Sow) converges by the monotone convergence theorem
Similarly: $\quad \underbrace{S_{2} \leqslant S_{2 N}}_{\left(S_{2 w}\right) \text { increasing }} \leqslant \underbrace{S_{2 N+1}}_{\text {decreasing }}$ for $N \geqslant 1$
Therefore $\left(S_{2 N+1}\right)$ converges by the monotone convergence theorem but:

$$
0=\lim _{N \rightarrow+\infty} S_{2 N+1}-S_{2 N}=\lim _{N \rightarrow+\infty} S_{2 N+1}-\lim _{N \rightarrow+\infty} S_{2 N}
$$

Therefor they converge to the same limit!
Conclusion $\left(S_{N}\right)_{\text {Neiw }}$ converges to this lieut too!

$$
\Rightarrow \sum_{n \geqslant 1} \frac{(-1)^{n}}{n} \text { converges! }
$$

This is the prototype example of the following theorem

Theorem (Alternating series theorem)
Let $\left(a_{n}\right)_{n \in \mathbb{W}}$ be a decreasing sequence of positive real numbers that converges to 0 . then the alternating series: $\sum(-1)^{n} a_{n}$ converges.

Proof: Exercise.
Example $\sum_{n \geqslant 2} \frac{(-1)^{n}}{\ln n}$ converges
Indeed $a_{n}=\frac{1}{\ln n}, \ln$ is an increasing
function on $(0,+\infty)$, therefore if $n \geqslant 2$,

$$
\begin{aligned}
0 & \leqslant \ln n \leqslant \ln (n+1) \\
\Rightarrow \quad a_{n+1} & =\frac{1}{\ln (n+1)} \leqslant \frac{1}{\ln x}=a_{n} \quad \text { fo } n \geq 2
\end{aligned}
$$

Since $\lim _{n \rightarrow+\infty} \frac{1}{\ln n}=0$, the alternating series converges.

Remark Theorem still applies if the hypotheses are satisfied after a finite number of terms.

$$
\begin{aligned}
& \quad \text { e.g. } \sum_{n 20}(-1)^{n} \sin \left(\frac{5 \pi}{n+1}\right) \\
& a_{0}=\sin (5 \pi)=0 \\
& a_{1}=\sin \left(\frac{5 \pi}{2}\right)=\sin \left(2 \pi+\frac{\pi}{2}\right)=1 \\
& a_{2}=\sin \left(\frac{5 \pi}{3}\right)=\sin \left(2 \pi-\frac{\pi}{3}\right)=-\operatorname{sn}\left(\frac{\pi}{3}\right)=-\frac{\sqrt{3}}{2} \\
& a_{3}=\sin \left(\frac{5 \pi}{4}\right)=\sin \left(\pi+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2} \\
& a_{4}=\sin (\pi)=0 \\
& a_{5}=\sin \left(\frac{5 \pi}{6}\right)=\sin \left(\pi-\frac{\pi}{6}\right)=\frac{1}{2} \\
& a_{6}=\sin \left(\frac{5 \pi}{7}\right) \simeq 0,78>a_{5}
\end{aligned}
$$

(...)
but for $x \geqslant 9, \quad \frac{5 \pi}{n+1} \in\left[0, \frac{\pi}{2}\right]$, where \sin is increasing, therefore $\left(a_{n}\right)=\left(\sin \left(\frac{s \pi}{n+1}\right)\right)$ is decreasing for $n \geqslant 9$. Sow write $\sum_{n \geqslant 0}(-1)^{n} \sin \left(\frac{s \pi}{n+1}\right)=\underbrace{\sum_{\substack{9 \\ \text { converges } \\ \text { by the } \\ \text { theorem }}}^{9} \sin \left(\frac{s \pi}{n+1}\right)}_{\substack{n=0 \\ \text { firitesum }}}+\sum_{\sum_{n 21)^{n}}\left(-\frac{n}{(n \pi}\right)}^{n}$

What happens if it is not alternating?
Definition A series $\left(\sum_{n 20} a_{n}\right)$ is said to be absolutely convergent if the positive series $\left(\sum_{n \geq 0}\left|a_{n}\right|\right)$ converges.

Ex: $\sum \frac{(-1)^{n}}{n^{2}}$ converges absolutely, $\sum \frac{(-1)^{n}}{n}$ does not.
Theorem: Absolutely convergent series converge.
Proof: omitted, relies on the completeness of \mathbb{R}.
Examples: $\sum_{n \in \mathbb{N}} q^{n},|q|<1$ converges absolutely and therefore converges.

WARNING: The converse is false.

$$
\sum \frac{(-1)^{n}}{n} \text { converges } \sum \frac{1}{n} \text { diverges }
$$

Series that converge but that are not absolutely convergent are sometimes called semi or conditionally convergent.

THE GOOD NEWS: To show the convergence of a series $\sum a_{n}$, l can try to show that it converges absolutely and study the positue series Elan|.

I can apply my convergence tests to the positive series $\sum\left|a_{n}\right|$.

Example: $\sum_{n \geqslant 1} \frac{\cos (n)}{n^{4}}$
We test for absolute convergence

$$
0 \leqslant \frac{|\cos (n)|}{n^{4}} \leqslant \frac{1}{n^{4}}
$$

therefore $\sum_{n=1} \frac{\cos (n)}{n^{4}}$ converges absolutely and therefore converges.

Dirichlet's test (not in book)
Consider a series of the form $\sum_{n=0} a_{n} b_{n}$
Assume that:- $\left(a_{n}\right)$ is a non-increasing sequence converging to 0 .

- $\exists c \in \mathbb{R}_{1}^{-}$,

$$
\left|\sum_{n=0}^{N} b_{n}\right|<C
$$

then $\sum_{n \geq 0} a_{n} b_{n}$ converges.
Poof Discrete 'integration by pants' $\quad B_{n}=\sum_{k=0}^{n} b_{n}, B_{-1}=0$

$$
\begin{aligned}
& \sum_{n=0}^{N} a_{n} b_{n}=\sum_{n=0}^{N} a_{n}\left(B_{n}-B_{n-1}\right) \\
&=\sum_{n=0}^{N} a_{n} B_{n}-\sum_{n=0}^{N-1} a_{n+1} B_{n} \\
&=a_{N} B_{N}+\sum_{n=0}^{a_{n=0}^{N-1}\left(a_{n}-a_{n+1}\right) B_{n}} \\
&=\underbrace{\sum_{N=0}^{N-1}\left(a_{n}-a_{n+1}\right) B_{n}}_{\substack{a_{N} B_{N}}} \\
& \text { Converges absolutely }
\end{aligned}
$$

$$
\sum_{n=0}^{N-1}\left|\left(a_{n}-a_{n+1}\right)\right|\left|B_{n}\right| \leqslant C \sum_{n=0}^{N-1}\left(a_{n}-a_{n+1}\right)=C\left(a_{0}-a_{N}\right)
$$

The engr estimate:

Example $\sum_{n \in \mathbb{N}^{2}} \frac{\sin (n)}{n}$. See tutorial.

POWER SERIES

History: The modern theory of power series began in fact with Newton, who even considered it his greatest mathematical discovery

Other important names: Abel, Cauchy, Euler
Motivation: Define new functions by considering series that depend on a parameter $\left(\sum_{n \geqslant 0} a_{n}(t)\right)$ Applications: "solving differential equations" If we consider the set T composed of the values for t for which $\left(\sum_{n 20} a_{n}(F)\right)$ is a convergent series one candefine a function $f(t)=\sum_{n=0}^{+\infty} a_{n}(t), \quad t \in T$.

Several natural questions: what is T like?
Does of lave any nice properties.

Example Let us consider the exponential function.
Recall that it is the unique solution to: the "Cauchy" problem $\left\{\begin{array}{l}y=y \\ y(0)=1 .\end{array}\right.$

By the fundamental theorem of analysis:

$$
e^{x}=1+\int_{0}^{x} 1 e^{t} d t
$$

however, we may integrate by parts to find:

$$
e^{x}=1+x+\int_{0}^{x}(x-t) e^{t} d t
$$

Repeating the trick:

$$
e^{x}=1+x+\frac{x^{2}}{2}+\frac{1}{2} \int_{0}^{x}(x-t)^{2} e^{t} d t
$$

and again..

$$
e^{x}=1+x+\frac{x^{2}}{2}+\frac{1}{3!} x^{3}+\frac{1}{3!} \int_{0}^{x}(x-t)^{3} e^{t} d t
$$

$(\ldots) \quad e^{x} \stackrel{?}{=} \sum_{n=0}^{+\infty} \frac{x^{n}}{n!}$
Dee it make sense to continue the process indefinitely?

Def A power series is a series depending or a parameter t of the form:

$$
\left(\sum_{n \geqslant 0} a_{n} t^{n}\right)
$$

Remark: It looks like an "infinite" polynomial...
Ex. $\sum_{n \geq 0} \frac{1}{n!} t^{n}$, let us study its convergence.
Fix $A \in \mathbb{R}^{+}$, then we apply the ratio test to the positive series. $\left.\sum_{n=0} \frac{1}{n} \right\rvert\, t n^{n}$
$\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{|t|}{n+1} \underset{n \rightarrow+\infty}{\longrightarrow} 0$ for fired t.

So $\sum_{n \geq 0} \frac{1}{n!} t^{n}$ converges absolutely therefore converges for every fixed $t \in \mathbb{R}$. (convergence for $t=0$ is obvious)

We car do better, a prion the "way it is converging" may depend on t, but in fact:

Let $R>0,0<|t|<R$, then:

$$
\left|\frac{a_{n+1}}{a_{n}}\right| \leqslant \frac{|t|}{n+1} \leqslant \frac{R}{n+1} \xrightarrow[n \rightarrow+\infty]{\infty} 0
$$

But now this is uniform on the disk of radius R.

So the way it converges, in some way is similar for every t in the metal $(-R, R)$.

All power series exhibit similar behaciom.

Plop San', spore that fr some $t_{0} \in \mathbb{R}^{+}$ the series converges then for all $R<\left|t_{0}\right|$, Eantn converges abolutely fr all $(t)<R$

Proof a_{n} to $^{n} \longrightarrow 0$, let $M>0$ and close $n_{0} \in \mathbb{N}$
such that for every $n \geqslant n_{0} \quad\left|a_{n} t_{0}^{n}\right| \leqslant M$, then:

$$
\left|a_{n} t^{n}\right\rangle \leqslant \left\lvert\, a_{n} t_{0}^{n}\left(\left|\frac{t}{t_{0}}\right|^{n} \leq M\left|\frac{R}{t_{0}}\right|\right.\right.
$$

Remark: These means that power series converge ar intervals of the form $(-R, R)$.

The above motivates the following definition
Definition: we define the radius of convergence of a power series to be:

$$
R=\sup \left\{|\gamma|, \quad \sum a_{n} \gamma^{n} \quad \text { converges }\right\}
$$

R gives the size of the largest open interval $(-R, R)$, on which we have absolute convergence.
N.B. We do not know what happens at the end points.

The problem of finding R is completely shed
Theorem (lanchy-Madamard) Let $\left(\sum_{n} a_{n} t^{n}\right)$ be a power series, then:

$$
\frac{l}{R}=\limsup _{n \rightarrow+\infty}\left|a_{n}\right|^{\frac{1}{n}}=\inf _{m \in \mathbb{N} \sup }\left|a_{n}\right|^{\frac{1}{n}}
$$

In particular, if $\lim _{n \rightarrow+\infty}\left|a_{n}\right|^{\frac{1}{n}}$ exists then $\frac{1}{R}=\lim _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}$

Example: $\sum_{n \geqslant 0} \frac{x^{n}}{n!}, R=+\infty, \quad \sum_{n \geqslant 0}^{l^{n}} x^{a_{n}=1}, R=1$ fall we even have $\sum_{n=0}^{+\pi} x^{n}=\frac{1}{1-x},|x|<1$.

We have answered the question where do power series converge? Now we answer the question about the properties of the sum:
Theorem Let $\left(\sum_{n>0} a_{n} t^{n}\right)$ be a power series with radius of convergence given by $R>0$. Let $f(t)=\sum_{n=0}^{+\infty} a_{n} t^{n}, t \in(-R, R)$ then:
(1) f is a continuous function on $(-R, R)$
(2) f is differentiable on $(-R, R)$ and:

$$
f^{\prime}(t)=\sum_{n=0}^{+\infty} n a_{n} t^{n-1}=\sum_{n=0}^{+\infty}(n+1) a_{n+1} t^{n}
$$

We can differentiate term by term, like a polynomial.

Example: We shall show that $e^{x}=\sum_{n=0}^{+\infty} \frac{1}{n_{j}^{\prime}} x^{n}$.
Define $f(x)=\sum_{n=0}^{+\infty} \frac{x^{n}}{n!}$, by the theorem we have: $\quad f^{\prime}(x)=\sum_{n=0}^{\infty} \frac{(n+1)}{(n+1)!} x^{n}-\sum_{n=0}^{+\infty} \frac{x^{n}}{n!}=f(x)$
Furthermore, $f(0)=\sum_{n=0}^{\infty} \frac{0^{n}}{n!}=1$
so $\left\{\begin{array}{l}f^{\prime}=f, \text { by uniqueness: } \\ f(0)=1\end{array}\right.$,

$$
e^{x}=\sum_{n=1}^{\infty \infty} \frac{x^{n}}{n!}
$$

Remark: The theorem tells us what happens on the open interval $(-R, R)$.

Remark The theorem also tells us that differentiating does not cause the radius of convergence to decrease.

Example: \cos and sin can be expanded in series. To have an easy way to remember the formulae We allow orerselves to work in \mathbb{C}

$$
\begin{gathered}
\mathbb{C}=\{a+i b, a, b \in \mathbb{R}\} \quad i^{2}=-1 \\
z \in \mathbb{C}, \quad|f|^{2}=a^{2}+b^{2} \\
e^{i x}=\cos (x)+i \sin (x) \\
e^{i x}=\sum_{n=0}^{+\infty} \frac{(i x)^{n}}{n!}=\sum_{p=0}^{+\infty} \frac{(i x)^{2 p}}{(2 p)!}+\sum_{p=0}^{+\infty} \frac{(i x)^{2 p+1}}{(2 p+1)!}
\end{gathered}
$$

split into odd an even ports
using $i^{2}=-1$, we find.

$$
e^{i x}=\underbrace{\sum_{p=0}^{+\infty} \frac{(-1)^{p} x^{2 p}}{2 p_{0}^{\prime}}}_{\cos (x)}+i \underbrace{\sum_{p=0}^{+\infty} \frac{(-1)^{p} x^{2 p+1}}{\left(2 p^{7} 1\right)!}}_{\sin (x)}
$$

Algebraic operations on power series
Let $\sum_{n=0} a_{n} t^{n}, \sum_{n=0} b_{n} t^{n}$ be power sevies with radii of convergence R_{a} and R_{b}.

Let $c \in \mathbb{R}$, $c \neq 0 \quad(c=0$ is trivial $)$
(1) if $b_{n}=c a_{n}$ then $\sum_{n=0}^{+\infty} \frac{c a_{n}}{b_{n}} t^{n}=c \cdot \sum_{n=0}^{1 \infty} a_{n} t^{n}$ and $R_{b}=R_{a}$
(2) $b_{n}=c^{n} a_{n}$ then $R_{b}=\frac{R}{c}$.
(3) The radius of convergence Rats of $\sum\left(a_{n}+b_{n}\right) t^{n}$ satisfies, $\quad R_{a+b} \geqslant \min \left(R_{a}, R_{b}\right)$ and if

$$
H t<\min \left(R_{a}, R_{L}\right) \quad \sum_{n=0}^{+\infty}\left(a_{n} t b_{n}\right) t^{n}=\sum_{n=0}^{+\infty} a_{n} t^{n}+\sum_{n=0}^{+\infty} b_{n} t^{n} .
$$

Multiplication of power series.
Theorem (Merter's) Let $\left(\sum_{n \geq 0} a_{n}\right)$ and $\left(\sum_{n \geq 0} b_{n}\right)$ be convergent
two r series at least one of which converges ABSOLUTELY then if $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$,
$\sum_{n \geqslant 0} C_{n}$ converges and:

$$
\sum_{n=0}^{+\infty} c_{n}=\left(\sum_{n=0}^{+\infty} a_{n}\right)\left(\sum_{n=0}^{1 \infty} b_{n}\right)
$$

N.B. Its like a "distubutirity" property.

Proof of Merten's theorem Assume $\sum_{n=0}^{+\infty}\left|a_{n}\right|<+\infty$
Let us first investigate the partial sums of $\sum_{n=0} C_{n}$
For $N \in \mathbb{N}, \sum_{n=0}^{N} c_{n}=\sum_{n=0}^{N} \sum_{k=0}^{n} a_{k} b_{n}-k$, to rewrite this finite sem it is informative to represent the terms on a diagram:
we could also sum now by now

Therefore:

$$
\begin{aligned}
\sum_{n=0}^{N} \sum_{n=0}^{n} a_{k} b_{n-k} & =\sum_{k=0}^{N} \sum_{n=k}^{N} a_{n} b_{n}-k \\
& =\sum_{k=0}^{N} \sum_{n=0}^{N-k} b_{n}
\end{aligned}
$$

neindex
Now morally we wart to take $N \rightarrow+\infty$
but it is slightly more complicated.

$$
\text { Set: } A=\sum_{n=0}^{+\infty} a_{n} \quad B=\sum_{n=0}^{+\infty} a_{n}
$$

Tit $\varepsilon \in \mathbb{R}_{T}{ }^{+}$

$$
\begin{aligned}
& \sum_{n=0}^{N} \sum_{k=0}^{n} a_{k} b_{n-k}=\sum_{n=0}^{N} a_{k} \sum_{n=0}^{N-k} b_{n} \\
& =\sum_{k=0}^{N} a_{k} B+\sum_{k=0}^{N} a_{k}(\underbrace{\left(\sum_{n=0}^{N-k} b_{n}-B\right)}_{\sum_{n=N-k+1}^{+0} b_{n}} \\
& =\left(\sum_{k=0}^{N} a_{n}-A\right) B+A B+\sum_{k=0}^{N=N-k+1} \sum_{n=N-k+1}^{+\infty} b_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \frac{\varepsilon}{3}+\sum_{h=0}^{N}\left|a_{k}\right|\left|\sum_{n=N-k+1}^{+\infty} b_{n}\right|
\end{aligned}
$$

Now the trick, we introduce $N_{0} \in \mathbb{N}$ and write:

Since $\sum_{k=0}^{10}\left|a_{k}\right|<+\infty$, there is N_{1} such that if $N_{0} \geqslant N, \quad \sum_{n=N_{0}}^{\infty}\left|a_{n}\right|<\frac{\varepsilon}{3 B} \quad$ So we fix $\quad N_{0} \geqslant N_{1}$.
now for any N la ge enough $N-N_{0}+1 \geqslant N_{2}$ where N_{2} is chosen such that $\left|\sum_{n=M}^{1 \infty} b_{n}\right| \leq \frac{\varepsilon}{3^{A}}$ foal $M \geqslant N_{2}$.
N_{a} it fellas that, for any $N \geqslant N_{2}$

$$
\left|\sum_{n=0}^{N} C_{n}-A B\right| \leqslant \varepsilon .
$$

Application Multiplication of power series
Apply the above with $\sum_{n 20} a_{n} t^{n}$ and $\sum_{n=0} b_{n} t^{n}$
the radius of convergence $R \geqslant \min \left(R_{a}, R_{b}\right)$ and: $\left(\sum_{n=0}^{\infty} a_{n} t^{n} \sum_{n=0}^{+\infty} b_{n} t^{n}\right)=\sum_{n=0}^{+\infty}\left(\sum_{k-0}^{n} a_{n} b_{n-k}\right) t^{n}$
fo $|t|<\min \left(R_{a}, R_{b}\right)$,
N.B same rule as fo polynomials!

Example $e^{x} e^{y}=e^{x+y}$

$$
e^{x} e^{y}=\sum_{n=0}^{+\infty} \frac{a^{n}}{n!} \sum_{k=0}^{1 \infty} \frac{y^{k}}{k!}=\sum_{n=0}^{+\infty}\left(\sum_{k=0}^{n} \frac{x^{k} y^{n-k}}{n_{0}^{\prime}(n-k)!}\right)
$$

He ven's
thorn
But (Binomial theorem), $(x+y)^{n}=\sum_{n=0}^{n}\binom{n}{k} x^{k} y^{n-k}$

Therefore:

$$
e^{x} e^{y}=\sum_{n=0}^{+\infty} \frac{1}{n!}\left(\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}\right)=\sum_{k=0}^{+\infty} \frac{1}{n!}(x+y)^{n}=e^{x+y}
$$

Integration term by term
Let $f(x)=\sum_{n=0}^{+\infty} a_{n} x^{n}$ be a convergent power aeries with radius of convergence $R>0$.

Let $x<R$, then

$$
\int_{0}^{x} f(t) d t=\sum_{n=0}^{+\infty} \frac{a_{n}}{n+1} t^{n+1}=\sum_{n=1}^{+\infty} \frac{a_{n-1}}{n} t^{n}
$$

and the RHS is a power series with radius of convergence at least R. (Actually it is R)
\Rightarrow You can integrate term by term

Example Recall that:

$$
\frac{1}{1-x}=\sum_{n=0}^{+\infty} x^{n} \quad,|x|<1
$$

using the theorem we can say that:

$$
-\ln (1-x)=\sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1}=\sum_{n=1}^{+\infty} \frac{x^{n}}{n}
$$

we can deduce that for $|x|<1$

$$
\ln (1+x)=\sum_{n=0}^{1 \infty}(-1)^{n+1} \frac{x^{n}}{n}
$$

oh but wait fo $x=1$ the RHS is the conditionally convergent alternating series $\sum_{n=0}^{1 \infty} \frac{(-1)^{n+1}}{n}$. and the LHS has a limit $x \rightarrow 1, \ln (2)$

Can we take the limit $x \rightarrow 1$ and conclude that

$$
\ln 2=\sum_{n=0}^{1 \infty} \frac{(-1)^{n+1}}{n} ? ? \text { ? }
$$

IN GENERAL, WE CANNOT TAKE THE LIMIT, but it turns out this is okay.

Theorem (Abel) Suppose $\sum a_{n} t^{n}$ is a power series with radius of convergence $R>0$.

Suppose that $\sum_{n=0} a_{n} t_{0}^{n}$ converges with $t= \pm R$

$$
\lim _{x \rightarrow t_{0}} \sum_{n=0}^{+\infty} a_{n} t^{n}=\sum_{n=0}^{1-\infty} a_{n} t_{0}^{n}
$$

proof (omitted)
Using Abel's theorem we have:

$$
\ln 2=\lim _{x \rightarrow 1} \ln (1+x)=\lim _{x \rightarrow 1} \sum_{n=0}^{+\infty} \frac{(-1)^{n+1} x^{n}}{n}=\sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{n}
$$

NON TRIVIAL STEP.

Power series centered at an arbitrary point C
Definition Let $c \in \mathbb{R}$, a power series centered at c, is a series of the form $\sum_{n \geqslant 0} a_{n}(t-c)^{n}$.

Everything is exactly the same as before beau you can retranslate to o
set $T=t-c$.

Taylor-Mchanun Series
In the previous lectures we have seen that sometimes functions can be written as powerseries.

Furthermore, let us consider:

$$
f(t)=\sum_{n=0}^{+\infty} a_{n}(t-c)^{n}, \quad|t-c|<R
$$

where R is the radius of convergence.
Note that $f(c)=a_{0}$
Ming the differentiation theorem iteratively we conclude that f is C^{∞} (differentiable to angoder)

$$
a_{n}=\frac{f^{(n)}(c)}{n!}
$$

$f^{(n)}$ is the oath derivative of the function f.

In other words the series is completely determined by fard its derivatives at the point s.

Definition Let $f: I \rightarrow \mathbb{R}$ be an infinitely differentiable function defined on an open interval I.
We define the Taylor-Mclaurn series associate to f centered at $c \in I$, to be the power series:

$$
\sum_{n \geqslant 0} \frac{f^{n}(c)}{n!}(t-c)^{n}
$$

N.B. We have said NOTHING about the convergence of this power series which CAN HAVE vanishing radius of convergence. stopped here
Def If for some $c \in I$, the series has non-vanishing radius of convergence AND

$$
f(x)=\sum_{n=1}^{r \infty} \frac{f^{n}(c)}{n!}(t-c)^{n}
$$

then we say that f is analytic near C.
The theory of analytical functions is best developed with \mathbb{C} and so shall venture no further on
this terrain.
N.B. when f is not analytic its TayloL-Mclauin series does not determine it uniquely.

Examples of analytic functions. pryonials, exp, cos sin, ..
The sum, product and composition of avalgtic functions are eralgtie.

Example of Taylor-Mclauin series

$$
\begin{aligned}
& 1 / f(x)=x^{\alpha} \quad x \in \mathbb{R}_{+}^{+}, \text {near } 1 \\
& f(1)=1 f^{\prime}(x)
\end{aligned}=\alpha x^{\alpha-1} \quad f^{\prime \prime}(x)=\alpha(\alpha-1) x^{\alpha-1}, ~(\alpha-n+1) x^{\alpha-n}
$$

Taylo-Mclausu series: $\quad \sum_{n \geqslant 0} \frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n!}(t-1)^{n-}$

Example 2, $f(x)=\cos (x) \quad f^{\prime}(x)=-\sin (x)$

$$
\begin{aligned}
& f^{\prime \prime}(x)=-\cos (x) \quad f^{(3)}(x)=\sin (x) \\
& f^{(2 n)}(x)=(-1)^{n} \cos (x) \quad f^{(2 n+1)}=(-1)^{n+1} \sin (x)
\end{aligned}
$$

Therefore: $\quad f^{(2 n)}(x)=(1)^{n}, f^{(2 n+1)}(x)=0$
Hence the Taylor-Mclaurn series at 0 is $\quad \sum_{p=0} \frac{(-1)^{p} x^{2 p}}{(2 p)!}$.

If the Taylor-Mclaunn series at C has non-jeno radius of convergence, does it necessarily converge to f '?

NO

Consider $\quad f(x)= \begin{cases}e^{-\frac{1}{x}} & x>0 \\ 0 & \text { si } x \leqslant 0\end{cases}$
Ats a smooth function such that $f^{(-1)}(0)=0$ for all $n \geq 0$, therese it Taglor-Mclawn series a to vanishes, but $f \neq 0$!

Conclusion: Two different C^{∞} functions car have the same Taylor-Mclauun series... So even if
the power series has no-vanishing radius of convergence it might not converge to the function we started with.
$f(x)=\left\{\begin{array}{ll}e^{-x} & x>0 \\ 0 & \text { si } x \leqslant 0\end{array} \quad\right.$ is c^{∞} but not analytic.

When does the Taylor-Mclauxin series converge to the function?
To answer this lets thy to estimate the error.
Taylois theorem with integral remainder.
Let f be a smooth function (differentiable to any order) on an interval open interval I and $c \in I$,

$$
f(x)=f(c)+\int_{c}^{x} f^{\prime}(t) d t
$$

by the fundamental theorem of analysis, integrating by parts n times we arne at:

$$
f(x)=\sum_{n=0}^{n} \frac{f^{\prime}(c)}{n!}(x-c)^{n}+\int_{c}^{x} \frac{f^{(n+1)}(t)}{n!}(x-t)^{n} d t
$$

Integral remainder $R_{I}(f, x)=\int_{c}^{x} \frac{f^{(n+1)}(t)}{n!}(x-t)^{n} d t$.

So of $R_{I}(f, x) \rightarrow 0$ we have, convergence.

Example: Let $f(x)=x^{\alpha}$, woke near $c=1$
we could calculate the remainder but we car in fact do better $\Rightarrow f(1+x)=(1+x)^{\alpha}=e^{\alpha \ln (11 x)}$
Conceptual solution
$\ln (1+x)$ is analytic $f r|x|<1$, \exp is aralfte.
the composition of analytic functions is analytic, in o the power series converges.

Another way of dong things that does notuse the notion of analytic functions is to look at the series units own night, study its convergence and show that it sahsfes a di. Q.

$$
\sum_{n \geqslant 0}^{+\infty} \frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n!} x^{n}
$$

Observe that if $f(x)=(1+x)^{\alpha} \quad, f^{\prime}(x)=\alpha(1+x)^{\alpha-1}$

$$
=\frac{\alpha f(x)}{(1+x)}
$$

so f is a solution to the Cauchy problem:

$$
\left\{\begin{array}{l}
(1+x) f^{\prime}(x)=\alpha f(x) \\
f(0)=1
\end{array}\right.
$$

Note that $\left|\frac{a_{n+1}}{a_{n}}\right| \leqslant\left|\frac{\alpha-n}{n+1}\right| \xrightarrow[n \rightarrow+\infty]{\longrightarrow}$ '
So $\quad R=1$
we set: $g(x)=\sum_{n=0}^{+\infty} \frac{\alpha(\alpha-1) \ldots(\alpha-n+1)}{n!} x^{n},|x|<1$

$$
\begin{aligned}
g^{\prime}(x) & =\sum_{n=1}^{1 \infty} \frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{(n-1)!} x^{n-1} \\
g^{\prime}(x) & =\sum_{n=0}^{+\infty} \frac{\alpha(\alpha-1) \cdots(\alpha-n)}{n!} x^{n} \\
(1+x) g^{\prime}(x) & =\sum_{n=0}^{1 \infty} \frac{\alpha(\alpha-1) \cdots(\alpha-n)}{n!} x^{n}+\sum_{n=0}^{+\infty} \frac{\alpha(\alpha-1) \cdots(\alpha-n)}{n!} x^{n-1} \\
& =\sum_{n=1}^{1 \infty}\left(\frac{\alpha(\alpha-1) \cdots(\alpha-n)}{n!}+\frac{\alpha(\alpha-1) \cdots(\alpha-n+1)) x^{n} k}{(n-1)!}\right. \\
& =\sum_{n=1}^{1 \infty} \frac{\alpha(\alpha-1) \cdots \alpha(\alpha-n+1)(\alpha-n+n)}{n!} x^{n}+\alpha \\
& =\alpha\left(\sum_{n=0}^{+\infty} \frac{\alpha(\alpha-1) \cdots \alpha(\alpha-n+1)}{n!} x^{n}\right)=\alpha g(a)
\end{aligned}
$$

Therese, $\quad \frac{d g}{d x}=\frac{\alpha g(x)}{1+x}$ and $g(0)=1$

$$
d(\ln f)=2 d(\ln (1+x)) \Rightarrow f(x)=C(1+x)^{2}
$$

she $f(0)=1, c=1$ and $f(x)=(1+x)^{2}$
This proves that:

$$
\begin{aligned}
& \text { Generalisation } \\
& \text { of } \\
& \text { Ane binomial } \\
& \text { theorem }
\end{aligned}(1+x)^{\alpha}=\sum_{n=0}^{+\infty} \frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n!} x^{n},|x|<1
$$

or equivalently.

$$
x^{\alpha}=\sum_{n=0}^{10} \frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n!}(x-1)^{n} \quad|x-1|<1
$$

Finding the radius of convergence using the ratio test

Prop let $\sum a_{n} x^{n}$ be a power series and appose that $\lim _{n \rightarrow+\infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=L$,
then: if $L=+\infty, R=0$

$$
\begin{array}{ll}
\text { if } 0<L<+\infty, & R=\frac{1}{L} \\
\text { if } L=0, & R=+\infty
\end{array}
$$

Remark Less general than Canchy-Madamard but is sometimes easier to apply.

Proof Let $0<|x|<\tau<\frac{1}{L}$ then the ratio test applies uniformly, and the series converges absolutely fo all $|x|<\frac{1}{L}$, therefore $R \geqslant \frac{1}{L}$

If $|x|>L$ then again the ratio test applies negatively and therefore $R \leqslant \frac{1}{L} \Rightarrow R=\frac{1}{L}$

To be move precise, the ratio test applies negatively to $\sum\left|a_{n}\right| k e r$ which cannot be absolutely convergent if $|x|>\frac{1}{L}$. If it converged conditionally at sone point $x_{0},\left|x_{0}\right|>\frac{1}{L}$ then it would converge absolutely (see Proposition at the start of the notes on Powerseries) for all $\frac{1}{L}<|x|<\left|x_{0}\right|$ but this is not possible by the above application of the ratio test.

So the series does not converge if $|x|>\frac{1}{L}$ and hence $\quad R \leqslant \frac{1}{L}$ as stated.

Example $\sum_{p=0}^{+\infty} \frac{(-1)^{p}}{(2 p)!} x^{2 p}$
Recall that \cos is the unique solution of the equation $\left\{\begin{array}{l}y^{\prime \prime}+y=0 \\ y^{\prime}(0)=0 \\ y(0)=0\end{array}\right.$
Let us show that $f(x)=\sum_{p=0}^{+\infty} \frac{(-1)^{p}}{(2 p)!} x^{2 p}$ satisfies this equation

First, the radius of convergence of the power series is $R=+\infty$.

$$
\begin{aligned}
& a_{n}=\left\{\begin{array}{cl}
\frac{(-1)^{n}}{n!} & \text { if } n \text { is even } \\
0 & \text { if } n \text { is odd. }
\end{array}\right. \\
& \left(a_{n}\right)^{\frac{1}{n}}=\left\{\begin{array}{cl}
\left(\frac{1}{n_{0}}\right)^{\frac{1}{n}} & \text { if } n \text { is even } \\
0 & \text { if } x \text { is odd }
\end{array}\right. \\
& \lim _{n \rightarrow \infty} e^{\frac{1}{n} \ln \frac{1}{n!}}=e^{-\frac{1}{n} \sum_{\mu=1}^{n} \ln n} \rightarrow 0 \\
& \begin{array}{l}
\text { Compare vil } \int \ln x d x \text { going that } \\
\text { la is increasing. }
\end{array}
\end{aligned}
$$

so by the Cauchy. Hadamard therem $\frac{l}{R}=0 \Rightarrow R=+\infty$
Nov we calculate on \mathbb{R}.

$$
\begin{aligned}
f^{\prime}(x) & =\sum_{p=1}^{1 \infty} \frac{(-1)^{p}}{(2 p-1)!} x^{2 p-1} \\
f^{\prime \prime}(x) & =\sum_{p=1}^{1 \infty} \frac{(-1)^{p}}{(2 p-2)!} x^{2(p-1)} \\
f^{\prime \prime}(x) & =\sum_{p=1}^{100} \frac{(-1)^{p}}{(2(p-1))^{\prime}} x^{2(p-1)} \\
& =\sum_{p=0}^{1 \infty} \frac{(-1)^{p+1}}{(2 p)!} x^{2 p}=-f(x)
\end{aligned}
$$

Furthermone, $f(0)=1=\cos (0)$, no $f(x)=\cos x$ foall $x \in \mathbb{R}$.

Examples Using the rules of computation of power series to find new power series expansions.

Power series expansion of arctan.

$$
\arctan (1)=0, \quad \operatorname{anctan}^{\prime}(x)=\frac{1}{1+x^{2}}
$$

For $|x|<1,\left|x^{2}\right|<1$ and no we can use the geometric aries.

$$
\frac{1}{1+x^{2}}=\sum_{n=0}^{+\infty}(-1)^{n} x^{2 n}
$$

now we can integrate; for $|x|<1$

$$
\arctan (x)=\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}
$$

Application: power series expansion of π.

$$
\arctan (1)=\frac{\pi}{4}, \text { does } \arctan (1) \stackrel{?}{=} \sum_{n=0}^{+\infty} \frac{(-1)^{n}}{2 n+1}
$$

\Rightarrow Apply Abels theorem.
By the alternating series test $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 x+1}$ converges,
therese by Abelis theorem.

$$
\pi=4 \sum_{n=0}^{+\infty} \frac{(-1)^{n}}{2 n+1}
$$

Example Power series expansion of $\frac{1}{(1+x)^{2}}$

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{-1}{1+x}\right) & =\frac{1}{(1+x)^{2}} \\
\text { if }|x|<1,-\frac{1}{1+x} & =\sum_{n=0}^{1 \infty}(-1)^{n+1} x^{n}
\end{aligned}
$$

Take the derivative:

$$
\frac{1}{(1+x)^{2}}=\sum_{n=0}^{1 \infty}(-1)^{n+1} n x^{n-1}=\sum_{n=0}^{+\infty}(-1)^{n}(n+1) x^{n}
$$

Further applications of the Taylor-Mclauren series
Even when the Taybor-Mclauun series of a C^{∞} function does not converge or converges but not to the function f, if we look at Taylois integral umainder theorem we see that it does offer an approximation of f near c, which improves as we get closer and closer to c. "asymptotic"

Let $f: I \rightarrow \mathbb{R}$ be a c^{∞} function I open, $c \in I$,

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)(x-c)^{n}}{k!}+\int_{c}^{x} \frac{f^{(n+1)}(t)}{n!}(x-t)^{n} d t
$$

If $|x-c|<\delta$, small enough no that $x \in I$, then $f^{(n+1)}$ is bounded by some $M>0$ and

$$
\left|\int_{c}^{x} f^{\ln (1)}(t) \frac{(x-t)^{n}}{n!}\right| \leqslant M \frac{|x-c|^{n+1}}{(n+1)!} \quad \text { "Lagnarge }
$$

We can therefore write:

$$
f(x)=\sum_{n=0}^{n} \frac{f^{(n)}(c)(x-c)^{n}}{n!}+O\left((x-c)^{n+1}\right)
$$

$O\left((x-c)^{n+1}\right)$ means that it is a funchon of the form $|x-c|^{n+1} \times g$ where g is banded rear.

This is known as the Taylor expansion of f near c to order n.
This can be uxful for computing limits.
Example $\frac{\sin x}{x}=\frac{x+O\left(x^{2}\right)}{x}$

$$
=1+0_{x \rightarrow c}(x)
$$

this is abounded function times x
so it follows that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$

$$
\begin{aligned}
& f(x)=\frac{\sin x}{x+\cos x} \quad x \in C_{1}+\infty[\\
& f(x)=\frac{\sin x}{x}\left(\frac{1}{1+\left(\frac{\cos x}{x}\right)}\right)=\frac{\sin x}{x}\left(1-\frac{\cos x}{x}+O\left(\left(\frac{\cos x}{x}\right)^{2}\right)\right. \\
& \downarrow \rightarrow 0=\frac{\sin x}{x}-\frac{\cos x \sin x}{x^{2}}+O\left(\frac{1}{x^{3}}\right)
\end{aligned}
$$

challenge: Find $\lim _{x \rightarrow 0^{+}} \frac{(\sin x)^{x}-x^{\sin x}}{(\tan x)^{x}-x^{\tan x}}$ (its not recessanly easy bit it con be done).

Example: $\tan x$ to oder 5 near 0

$$
\begin{aligned}
& \left.\tan x=\frac{\sin x}{\cos x}=\frac{x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+O\left(x^{7}\right)}{1-\left(\frac{x^{2}}{2!}-\frac{x^{4}}{4!}+O\left(x^{6}\right)\right.}\right)_{\ln x \text { small }<1!\mid} \\
& \text { can apply } \left.\frac{1}{1-x}=\sum_{\substack{n=\left(x^{7}\right)}}^{x^{n}}+O\left(x^{1+0} x^{6}\right)\right) \\
& \tan x=\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}\right)\left(1+\left(\frac{x^{2}}{2!}-\frac{x^{4}}{4!}\right)+\left(\frac{x^{2}}{2!}-\frac{x^{4}}{4!}\right)^{2}\right.
\end{aligned}
$$

$$
=x+\frac{x^{3}}{3}+\frac{2}{15} x^{5}+O\left(x^{6}\right)
$$

so $\frac{\tan x-x}{x^{3}}=\frac{1}{3}+O\left(x^{2}\right)$

$$
\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{2}}=\frac{1}{3}
$$

You can compose powerseries expansiars but you only go to the order you want.

$$
\begin{aligned}
& \ln (1+\tan (x))=\ln (1+\underbrace{\left.x+\frac{x^{3}}{3}+\frac{2}{15} x^{5}+O\left(x^{6}\right)\right)}_{\text {omethng anal } x \rightarrow 0} \\
& \ln (1+x)=\sum_{n=1}^{+\infty}(-1)^{n+1} \frac{x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+O\left(x^{4}\right) \\
& \ln (1+\tan x)=x+\frac{x^{3}}{3}+\frac{-1}{2}\left(x+\frac{x^{3}}{3}+\frac{2}{15} x^{5}\right)^{2} \\
& \ln (1+\tan x)=x+\frac{1}{3} \frac{1}{3}-\frac{1}{2} x^{3}+O\left(x^{4}\right) \\
&
\end{aligned}
$$

