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-1 What is this course about?
The aim of this course is to polish up your knowledge of calculus and provide some
exposure to the modern mathematical theory that was developed through the study
of diverse physical phenomena such as gravitation, electromagnetism, movement of
fluid bodies, etc.

A central notion we will become accustomed to is that of a field of quantities, let us
first consider a few examples:

Examples
1. From mechanics: the velocity vector v⃗ of a particle.

Classically, the movement of a particle P in space E , is represented as a curve
t ∈ R 7→ P(t) ∈ E . This notation means that to every time t is mapped to a
point P(t) in space E : the position of the particle at time t. Making the usual
assumptions about E in classical mechanics, one may fix an arbitrary origin O
and it is possible to locate the particle P at anytime t if we know the position
vector

−−−→
OP(t). The velocity vector at time t0 is then defined to by:

v⃗(t) = lim
t→t0

−→
OP(t) −

−→
OP(t0)

t− t0
= lim

t→t0

−−−−−−→
P(t0)P(t)

t− t0
.

Observe that it is independent on the choice of origin and only depends on the
point P(t0), hence we can assign to every point P(t) on the trajectory a vector
t⃗: this is a vector field along a curve.

P(t) �v(t)

Figure 1: A curve in a plane

Note that the vector is more than just 3 real numbers: I need to fix a frame to

represent v⃗ as an element

vxvy
vz

 of R3 and these numbers vx, vy, vz depend on

that choice.

Furthermore, if one fixes a reference frame then the trajectory can be modelled
as a function from: R → R3.
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S

M

2. Gravitation

Assume now that you are considering the gravitational force felt by a small
test particle with mass m << MS due to a nearby star S with mass MS. It is
subject to the force:

−→
F = −

mGMS

||
−−→
SM||3

S⃗M.

Save m, this expression only depends on S and the point of M in space so one
may rewrite:

−→
F = m

−−−→
G (M),

where here:
G (M) = −

GMS

||
−−→
SM||3

−−→
SM.

This is a vector field, which we can refer to as the gravitational field of the star.
It assigns to each point M in space a vector. If we choose a reference frame,
then this will be assimilated to a function from: R3 → R3.

3. Quantum mechanics

In quantum mechanics, a particle is described by its wave function, which is a
mapψ that to each point of space E assigns a complex number, i.e.: ψ : E → C.
Once more, a choice of reference frame leads us to model ψ as a map R3 → C.
This is known as a complex scalar field.

The wave function is satisfies a partial differential equation known as the
Schrödinger equation:

−i
∂ψ

∂t
= Ĥψ.

4. Electromagnetism: Maxwell’s equations

Classically, the electromagnetic field is described by two vector fields E⃗, B⃗. They
satisfy a famous system of equations known as the Maxwell’s equations. This
case aims to give you the tools to understand and analyse them, they are often
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written on one of the following ways.
div E⃗ = ρ

ε0
, ∇⃗ · E⃗ = ρ

ε0
,

−−→
curlE⃗ = −∂B⃗

∂t , ∇⃗ × E⃗ = −∂B⃗
∂t ,

divB⃗ = 0, ∇⃗ · E⃗ = 0,
−−→
curlB⃗ = µ0(⃗j+ ε0

∂E⃗
∂t ∇⃗ × B⃗ = µ0(⃗j+ ε0

∂E⃗
∂t ).

What these examples show is that it will be interesting to understand how to do
calculus on functions between vector spaces. R,R2,R3,Rn are the classical examples
(and where we work most of the time) but it is conceptually interesting to develop
the theory for an arbitrary vector space. Vaguely (and this is the extent in which we
need to understand these things) this is some set V, composed of vectors, in which
we have a way of adding elements together, i.e. a + operation, as well as a way of
scaling them using a scalar which for us is just a real number. i.e. we can make
sense of λ · v⃗, for λ ∈ R and v⃗ ∈ V.

We will not have any issue in working with an abstract vector space as the algebraic
operations are modelled on the usual algebraic operations available to us in vector
spaces and behave the same way. You can look up the formal axiomatic definition in
any textbook on Linear Algebra.

0 An (augmented) review of some basic vector geome-
try.

0.1 Orientation ← Start Lecture 1

To get started, we will review some basic notions from linear algebra by studying
the notion of orientation. This will enable us to work with the notions of basis and
determinant of a matrix.

The idea of things have some defined orientation is relatively, say for instance, which
way is up or down, left or right? When we look at something spin, we can ask which
way is it spinning.

We can capture something of this idea with notions from linear algebra, let us first
consider some examples:
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Orienting a line

The simplest case is a 1 dimensional vector space or, in other words, a line. Consider
the following figure:

Figure 2: Vectors on a line

Clearly the red r⃗ and blue b⃗ vectors are oriented in different ways, but how can I
appreciate this algebraically ?

Well, since a line is 1 dimensional, then any non-zero vector generates it. In other
words there is a constant a ̸= 0: such that:

r⃗ = ab⃗.

Intuitively the fact that r⃗ and b⃗ are pointing in different ways means that:

a < 0,

and had they been pointing the same way we would have:

a > 0.

So the sign of the constant between them can be used to ascertain if they are pointing
the same way or not. We can orient the line by declaring that the positive direction
is one of the vectors, and then determine the orientation of any other vector by com-
paring to this reference.

Orienting a plane

When we do trigonometry it is usual to define the positive sense of rotation to be
anti-clockwise as in the left below: We could say that the sense of rotation is defined

e⃗y

e⃗x

e⃗ ′y

e⃗ ′x

Figure 3: Orientations of a plane

by that needed to send e⃗x → e⃗y. If we apply this principle to the diagram on the
right then we find the opposite sense of rotation.
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The couples B = (e⃗x, e⃗y) and B ′ = (e⃗ ′x, e⃗ ′y) are both ordered basis of the plane,
and we can again compare them by expressing one in function of the other, writing
down the change of basis matrix.

Here from the diagram we see that: e⃗ ′x = −e⃗x and e⃗ ′y = e⃗y. So the change of basis
matrix is given by:

PB→B ′ =

(
−1 0
0 1

)
Remark 0.1. The change of basis matrix between two bases B = (e⃗1, . . . , e⃗n) (old
basis) and B ′ = (e⃗ ′1, . . . , e⃗ ′n) is obtained by placing in the i-th column the coordinates
of the vector e ′i expressed in the basis B ′. Explictly, assume that:

e⃗ ′i =

n∑
k=1

Pkje⃗k,

then:

PB→B ′ =

P11 . . . P1n
... . . . ...
Pn1 . . . Pnn

 .

Observe that in this case it is det PB→B ′ < 0. So the orientations of bases can be
compared by considering the sign of the determinant of the change of basis ma-
trix.

These examples motivate the following definition:

Definition 0.1

Let B and B ′ be two ordered bases of a vector space V. We say that they have
same orientation if det PB→B ′ > 0 and opposite orientation otherwise.

Example 0.1. If B = (e⃗1, e⃗2) and B ′ = (e⃗2, e⃗1) then:

PB→B ′ =

(
0 1
1 0

)
and det PB→B ′ < 0 so they have opposite orientation. This example illustrates
the importance of using ordered bases: changing the order of the basis vectors can
change its orientation. ⋄

In order to define an orientation for some space, we need to decide which bases are
positive and which are negative. This is a convention that needs to be made.

One may check that the relation “has same orientation as” defines an equivalence
relation on the set of all ordered basis of a vector space which has two equivalence
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classes. In other words, since a basis either has same orientation or not as another
basis, we can split the set of all ordered basis up into two classes in which all the
basis have same orientation. A choice of one of these classes is what we refer to as
an orientation.

Definition 0.2: Orientation

Let V be a finite dimensional vector space. An orientation of V is a choice
of one of the two equivalence classes. When such a choice has been made we
refer to V as an oriented vector space.

In practice, you only need to know one representative of the equivalence class; so
in other words it is sufficient to choose 1 reference basis B = (e⃗1, . . . , e⃗n) that you
declare positive and subsequently any other basis B ′ is:

• positive or positively oriented if B ′ has same orientation as B,
• negative or negatively oriented if B ′ has opposite orientation as B

Example 0.2. The standard orientations of the plane and space are given by the
following bases: In 3-space this is the mathematical statement corresponding to the

e⃗y

e⃗x

e⃗z

e⃗y
e⃗x

Figure 4: Standard orientations of planes and 3-space

right-hand rule. ⋄

Example 0.3. Let V = R3 and B = (⃗i, j⃗, k⃗) the standard basis. Orient V with B i.e.,
(⃗i, j⃗, k⃗) is positively oriented then:

• B ′ = (−⃗i, j⃗, k⃗) is negatively oriented. PB→B ′ =

−1 0 0
0 1 0
0 0 1

.

• B ′ = (⃗j, −⃗i, k⃗) is positively oriented. PB→B ′ =

0 −1 0
1 0 0
0 0 1

.

Check this using the right hand rule ! ⋄
← End Lecture 1
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0.2 General Euclidean spaces ← Start Lecture 2

The standard n-dimensional Euclidean space Rn comes with a natural scalar prod-
uct (also referred to as an inner product, or the dot product). Defined by:

x⃗ · y⃗ = x⃗ • y⃗ = ⟨⃗x, y⃗⟩ = (⃗x |y⃗) =

n∑
i=1

xiyi ∈ R,

where: x⃗ = (x1, . . . , xn) ∈ Rn, y = (y1, . . . ,yn) ∈ Rn. We have listed a number of
different notations used in the literature for this product. They often come in handy,
when there are many other different dots · indicating other types of notation.

As always it can be a conceptual aid to extract out the main algebraic properties of
our inner product, and work only with those. This enables us to treat many cases
uniformly. In this instance, it is straightforward to check that the dot product on
E = Rn has the following properties:

1. Linearity in the first variable:

∀u⃗, v⃗, w⃗ ∈ E, λ ∈ R, (λu⃗+ w⃗) • v⃗ = λ(u⃗ • v⃗) + w⃗ • v⃗.

2. Symmetry:
∀u⃗, v⃗ ∈ E, u⃗ • v⃗ = v⃗ • u⃗

3. Positivity:
∀u⃗ ∈ E, u⃗ • u⃗ ⩾ 0

4. Definiteness:
∀u⃗ ∈ E, u⃗ • u⃗ = 0 ⇒ u⃗ = 0.

Observe that the properties of linearity in the first variable plus and symmetry imply
that the inner product is also linear in the second variable so that the assignment
is bilinear.

An n-dimensional Euclidean space, or inner product space, is any vector space E of
dimension n on which we have given a rule, that allows us to combine two vectors
v⃗1 and v⃗2 to obtain a real number R, formalised as a mapping :

E× E −→ R
(⃗v1, v⃗2) 7−→ v⃗1 • v⃗2

that obeys the algebraic rules above.

Example 0.4. Let E =Mn(R) the set of square n×nmatrices with real coefficients,
this is a vector space. Define:

⟨A,B⟩ = tr(tAB),
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where tA is the transpose matrix of A = (Aij) whose coefficients are (tA)ij = Aji,
we also recall that if A = (Aij) then its trace is defined to be:

tr(A) =
n∑

i=1
Aii.

This defines a scalar product on Mn(R).

It is a straightforward exercise to check that the tr is a linear map fromMn(R) into
R, and that the transpose t is a linear map from Mn(R) →Mn(R) i.e.{

tr(λA+ B) = λtr(A) + tr(B),
t(λA+ B) = λtA+ tB

λ ∈ R, A,B ∈Mn(R)

and deduce from it linearity in the first variable of A.

Symmetry follows from the facts:{
t(AB) = tBtA,
tr(A) = tr(tA),

which can be verified by explicit computation. The coefficient at position (i, j) in AB
is given by:

n∑
k=1

AikBkj,

so the coefficient coefficient in position (i, j) of tAB is
n∑

k=1
BkiAjk =

n∑
k=1

(tB)ik(
tA)kj.

Indeed for any matrices A,B ∈Mn(R) we have:

⟨A,B⟩ = tr(tAB) = tr(t(tAB)) = tr(tBt(tA)) = tr(tBA) = ⟨B,A⟩.

⋄

The final properties also follow from an explicit computation, let A = (Aij) ∈Mn(R)
then:

(tAA)ij =
∑
k=1

AkiAkj,

and then:
⟨A,A⟩ =

n∑
i,k=1

A2
ki ⩾ 0.

If the sum vanishes then each term of the sum must vanish individually, but then
this means that all of the coefficients of the matrix must vanish, i.e. A = 0.
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Remark 0.2. The actual definition of an inner product does not rely in anyway on
the dimension of the vector space E, and continues to be meaningful if E is infinite
dimensional; these spaces are known as pre-Hilbert spaces.

When doing geometry 2 or 3 dimensions, you are accustomed to working with or-
thonormal bases. Their definition extends straightforwardly to higher dimensions
i.e. these are bases (e⃗1, . . . , e⃗n) of E with the following property:

e⃗i · e⃗j = δij =

{
1 if i = j,
0 otherwise,

One of the fundamental results of the theory of Euclidean spaces, that we state
without proof is:

Proposition 0.1: Orthonormal basis

Any Euclidean space E has an orthonormal basis.

Remark 0.3. The proof we omit here is actually algorithmic, i.e. given an arbitrary
basis in E we can use it to construct an orthonormal basis. The process is known as
the Gramm-Schmidt orthonormalisation procedure.

Example 0.5. Let E = M2(R) and ⟨A,B⟩ = tr(tAB) as above, then the following
matrices form an orthonormal basis of E.

1√
2

(
1 0
0 1

)
, 1√

2

(
1 0
0 −1

)
, 1√

2

(
0 1
1 0

)
, 1√

2

(
0 −1
1 0

)
.

⋄

The major theoretical consequence of Proposition 0.1 is that, up to a choice of or-
thonormal basis, all Euclidean spaces behave likeRn for some positive integern!

To see this, take an arbitrary space E with a scalar product • (for example: E =
Mn(R) and ⟨A,B⟩ = tr(tAB) as above.)

Let (e⃗1, . . . , e⃗n) be an orthonormal basis. By definition of a basis, all vectors v⃗,u⃗ ∈ E
can be uniquely decomposed into a linear combination of the basis elements, i.e.
there are unique real numbers1 v1, . . . , vn and u1, . . . ,un such that:

v =

n∑
i=1

vie⃗i, u =

n∑
i=1

uie⃗i.

Let us calculate, u⃗ • v⃗ using only the rules we gave above:

u⃗ • v⃗ =

(
n∑

i=1
uie⃗i

)
•

 n∑
j=1

vje⃗j

 ,

1These are known as the coordinates of u⃗ and v⃗ in the basis
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by linearity in the first variable we have:

u⃗ • v⃗ =
n∑

i=1
uie⃗i •

 n∑
j=1

vje⃗j

 ,

and then by linearity in the second variable:

u⃗ • v⃗ =
n∑

i=1

n∑
j=1

uivje⃗i • e⃗j.

Then since the basis is orthonormal, the only terms in the some that survive are
when i = j, hence:

u⃗ • v⃗ =
n∑

i=1

n∑
j=1

uivjδij =

n∑
i=1

uivi.

Which is the standard scalar product in Rn.

Remark 0.4. In essence, we have shown that from an algebraic point of view, there
is only one Euclidean space, namely Rn with its standard dot product, which is why
it is some times referred to as the Euclidean space.

The takeaway here should be that, from an algebraic point of view, there is no
real difference between working with an arbitrary Euclidean space E or Rn:
it is exactly the same if we work in an orthonormal basis. Conceptually, how-
ever, it is interesting to allow E to be arbitrary. For instance, when working
with E = Mn(R), it is enlightening to keep representing matrices as matri-
ces, instead of identifying them with column vectors in Rn2 . This also has
the advantage of not making it complicated to keep track of other algebraic
structures that a space may have. For example, multiplication of matrices in
Mn(R).

0.3 The special case of 3 dimensional Euclidean space
0.3.1 Cross product and triple product

The case of 3 dimensions has been of interest for engineers and physicists, our per-
ception of space is that there are 3 dimensions. Incidentally, it is well studied. Fur-
thermore, there are some “accidents” in this low dimension that do not occur in
higher dimensions, such as the possibility of defining the cross product.

In this section, E is an oriented (recall that this means that we have chosen a refer-
ence basis for the orientation) 3-dimensional Euclidean space. Then we can always
choose a positively oriented orthonormal basis (p.o.n.b.): (e⃗1, e⃗2, e⃗3).
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It is then custom to define the cross product as the following determinant:

v⃗× w⃗ =

∣∣∣∣∣∣
v1 w1 e⃗1
v2 w2 e⃗2
v3 w3 e⃗3

∣∣∣∣∣∣ ,
where:

v⃗ =

3∑
i=1

vie⃗i, w⃗ =

3∑
i=1

wie⃗i

Remark 0.5. You may have encountered this formula in transposed form, since det(A) =
det(tA) for any matrix A, you can use either definitions.

This definition is slightly unsatisfactory: it is not clear a priori that this definition
does not depend on the choice of orthonormal basis. One of the goals of the remainder
of this section is for us to check that it does not.

For this we introduce the:

Definition 0.3: Triple product

Let u⃗, v⃗, w⃗ ∈ E, then the triple product of u⃗, v⃗, w⃗ is defined by:

[u⃗, v⃗, w⃗] = (u⃗× v⃗) • w⃗.

Remark 0.6. This can sometimes be called the mixed product as it combines both
the scalar product with the cross product.

The triple product is an important mathematical object with a clear geometric in-
terpretation we will uncover at the end of this section. For now, let us note that it
has the following algebraic properties:

Proposition 0.2: Properties of the triple product

1. Viewed as map with three variables E×E×E→ R it is linear in the each
variable: 

[λu⃗1 + u⃗2, v⃗, w⃗] = λ[u⃗1, v⃗, w⃗] + [u⃗2, v⃗, w⃗],
[u⃗, λv⃗1 + v⃗2, w⃗] = λ[u⃗, v⃗1, w⃗] + [u⃗, v⃗2, w⃗],
[u⃗1 + u⃗2, v⃗, λw⃗1 + w⃗2] = λ[u⃗1, v⃗, w⃗1] + [u⃗2, v⃗, w⃗2],

we say that it is trilinear.
2. It is alternating, which means that if any two of u⃗, v⃗, w⃗ are equal then:

[u⃗, v⃗, w⃗] = 0.

Observe these properties imply the following:
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1. If (u⃗, v⃗, w⃗) is a linearly dependent family then [u⃗, v⃗, w⃗] = 0.

2. Swapping any two of the vectors u⃗, v⃗, w⃗, will flip the sign of the triple product,
e.g.

[u⃗, v⃗, w⃗] = −[⃗v, u⃗, w⃗].

Indeed, observe that:

0 = [u⃗+ v⃗, u⃗+ v⃗, w⃗] = [u⃗, u⃗+ v⃗, w⃗] + [⃗v, u⃗, w⃗]
= [u⃗, u⃗, w⃗]︸ ︷︷ ︸

=0

+[u⃗, v⃗, w⃗] + [⃗v, u⃗, w⃗] + [⃗v, v⃗, w⃗]︸ ︷︷ ︸
=0

.

Concretely, we can give the expression of [u⃗, v⃗, w⃗] in terms of the coordinates of the
vectors in the orthonormal basis (e⃗1, e⃗2, e⃗3).

Proposition 0.3: Coordinate expression

Assuming:

u⃗ =

3∑
i=1

uie⃗i, v⃗ =

3∑
i=1

vie⃗i, w⃗ =

3∑
i=1

wie⃗i

then:

[u⃗, v⃗, w⃗] =

∣∣∣∣∣∣
u1 v1 w1
u2 v2 w2
u3 v3 w3

∣∣∣∣∣∣ .
This means it is the determinant of the matrix whose columns are the coordinate col-
umn vectors U, V, W of the vectors u⃗, v⃗, w⃗ respectively in the basis (e⃗1, e⃗2, e⃗3).

We will now show that the triple product does not depend on the positively oriented
orthonormal basis chosen to calculate it, using the properties of the determinant
you are familiar with.

We will need the following fact about orthonormal bases:

Lemma 0.1

The change of basis matrix PB→B ′ between two orthonormal basis has deter-
minant ±1. In particular, the change of basis matrix between two positively
oriented orthonormal bases is exactly 1.

Let B = (e⃗1, e⃗2, e⃗3) and B ′ = (e⃗ ′1, e⃗ ′2, e⃗ ′3) be two positively oriented orthonormal
bases. To simplify notation we set:

P ≡ PB→B ′ .

14



Let u⃗, v⃗, w⃗ be 3 vectors and assume that U, V, W (resp. U ′, V ′, W ′) are the column
matrices formed by their coordinates in the basis B (resp. B ′). Then these columns
are related by:

U = PU ′, V = PV ′, W = PW ′.

Hence:
[u⃗, v⃗, w⃗] = det

(
U V W

)
= det

(
PU ′ PV ′ PW ′

)
= det P

(
U ′ V ′ W ′

)
= det P︸ ︷︷ ︸

=1
det

(
U ′ V ′ W ′

)
= det

(
U ′ V ′ W ′

)
.

The value of the triple product does not depend on the choice of positively
oriented orthonormal basis chosen to calculate it.

Remark 0.7. As you may have noticed, this independence relies on a choice of orien-
tation.

Since the cross product may be defined by the formula (in this case we define [u⃗, v⃗, w⃗]
by its coordinate expression in any positively oriented orthonormal basis.)

[u⃗, v⃗, w⃗] = (u⃗× v⃗) • w⃗.

It follows that:

The value of the cross product does not depend on the choice of positively ori-
ented orthonormal basis chosen to calculate it.

Conceptually, it is actually preferable to define the triple product first as a determi-
nant and then define the cross product. You can try to show that you can recover
the basic properties of the cross product from this definition using the properties of
the determinant.

0.3.2 Some geometric properties of the cross and triple products

Whilst the cross product in many ways behaves like the usual notions of multiplica-
tion, there is one property it does not share: associativity, i.e. in general:

(u⃗× v⃗)× w⃗ ̸= u⃗× (⃗v× w⃗).

Instead we have the following:

15



Proposition 0.4: Double cross product

Let a⃗, b⃗, c⃗ ∈ E then:

a⃗× (b⃗× c⃗) = (a⃗ • c⃗)b⃗− (b⃗ • a⃗)c⃗.

Remark 0.8. There is a mnemonic to remember this formula, in French it reads
(with French pronunciation of course)

A, B C’est Assez (pronounced AC) Bien au BAC.

It can be justified as follows (this was skipped during the lectures):

• By definition of the cross product: b⃗× c⃗ is orthogonal to the plane spanned by
the vectors (b⃗, c⃗), but the vector a⃗ × (b⃗ × c⃗) is orthogonal to b⃗ × c⃗ so it must
lie in the plane (b⃗, c⃗). Since it must also be orthogonal to a⃗ there is some non
constant k ∈ R such that:

a⃗× (b⃗× c⃗) = k
(
(a⃗ • c⃗)b⃗− (b⃗ • a⃗)c⃗

)
.

• It is possible to show that the constant k does not depend on the choice of vectors
a⃗, b⃗, c⃗! (Can you see why?) It then suffices to determine k for a specific choice
of a⃗, b⃗, c⃗. If (e⃗1, e⃗2, e⃗3) is a positive orthonormal basis then setting:

a⃗ = e⃗1, b⃗ = e⃗2, c⃗ = e⃗1

we find that:
k = 1.

We can use this formula to derive a link between u⃗× v⃗ and u⃗ • v⃗, for this, recall that
we define the length of a vector by: ||u⃗||2 = u⃗ • u⃗.

Now:
||u⃗× v⃗||2 = (u⃗× v⃗) • (u⃗× v⃗)

= [u⃗, v⃗, u⃗× v⃗] = [u⃗× v⃗, u⃗, v⃗]
= ((u⃗× v⃗)× u⃗) • v⃗.

Now using the formula above:

(u⃗× v⃗)× u⃗ = −u⃗× (u⃗× v⃗) = −
(
(u⃗ • v⃗)u⃗− ||u⃗||2v⃗

)
,

thus, combining with the above we have:

||u⃗× v⃗||2 = ||u⃗||2||⃗v||2 − (u⃗ • v⃗)2.

16



Now the (geometric) angle θ ∈ [0,π] between two vectors u⃗, v⃗ in 3 space is defined
by:

u⃗ • v⃗ = ∥u⃗∥∥⃗v∥ cos θ,

it then immediately follows from the above that:

||u⃗× v⃗|| = ∥u∥∥v∥ sin θ.

Remark 0.9. Observe that since θ ∈ [0,π], sin θ ⩾ 0.

Now introduce the geometric angle φ between the vectors u⃗× v⃗ and w⃗, then, by the
fundamental relationship between the cross product and triple product:

[u⃗, v⃗, w⃗] = (u⃗× v⃗) • w⃗ = ∥u⃗× v⃗∥∥w⃗∥ cosφ = ∥u⃗∥∥⃗v∥∥w⃗∥ sin θ cosφ.

A drawing (see optional reading) and some elementary geometric considerations will
then convince you that:

Let (u⃗, v⃗, w⃗) be an ordered family of three vectors and consider P the paral-
lelepiped supported by the vectors (u⃗, v⃗, w⃗) then:

[u⃗, v⃗, w⃗] =
{

Vol(P) if (u⃗, v⃗, w⃗) is positively oriented,
Vol(P) if (u⃗, v⃗, w⃗) is negatively oriented.

Here, Vol is the volume and it is understood that if P is degenerate, i.e.
(u⃗, v⃗, w⃗) is linearly dependent, then the volume vanishes.

M

T

- b

4 D

-

You should that this is correct if u⃗, v⃗, w⃗ are orthogonal to one another.

Remark 0.10. This interpretation should be known to you !!! This means its a
potential exam question !!!! ← End Lecture 2
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0.3.3 Some complements (can be skipped)

In the above, we used the fact that B = (e⃗1, . . . , e⃗n) and B ′ = (e⃗ ′1, . . . , e⃗ ′n) are two
orthonormal bases of a Euclidean space E, then the change of basis matrix

P = PB→B ′ ,

between them has determinant ±1. This is because it most be an orthogonal matrix,
i.e. it has the property that:

tPP = In,

where In is the identity matrix.

Given vectors u⃗, v⃗ ∈ E we can decompose them on either orthonormal basis:

u⃗ =

n∑
i=1

uie⃗i =

n∑
i=1

u ′ie⃗
′
i, v⃗ =

n∑
i=1

vie⃗i =

n∑
i=1

v ′ie⃗
′
i,

and according to the discussion at the end of Section 0.2, the following equalities
hold:

u⃗ • v⃗ =
n∑

i=1
uivi =

n∑
i=1

u ′iv
′
i.

Now, we have seen that the coordinates in the two bases are related by:

U = PU ′,

where U =

 u1
...
un

 and U ′

 u
′
1...

u ′n

. Writing this on components leads to:

ui =

n∑
j=1

Pijuj.

Now we plugging this into the second equality above:

n∑
i=1

n∑
k=1

n∑
l=1

Piku
′
kPilv

′
l =

n∑
i=1

u ′iv
′
i.

Rearranging the sums we conclude that:
n∑

i=1

n∑
k,l=1

(
n∑

i=1
PikPil

)
︸ ︷︷ ︸

=(PtP)kl

u ′kv
′
l =

n∑
i=1

u ′iv
′
i.
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This can be written in matrix form:
tU ′PtPV ′ = tU ′V ′.

Since the vectors u⃗ and v⃗ where arbitrary it follows that this must hold for any
column matrices U ′, V ′ and we conclude that:

PtP = In.

Remark 0.11. An isometry of a Euclidean space E is a special kind of linear map
u : E→ E on an inner product space E that preserves the scalar product, i.e.:

∀u⃗, v⃗ ∈ E,u(u⃗) • u(⃗v) = u⃗ • v⃗.

They therefore are exactly the linear transformations that preserve angles and dis-
tances. Orthogonal matrices are exactly the matrices associated to isometries, ex-
pressed in orthonormal bases.
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1 Multivariable calculus
← Start Lecture 3

The examples of the introduction showed that in many of the physical situations we
consider, after choosing a reference frame, we, in essence, want to study a function f
mapping some Rn into Rm, or even some abstract vector space V of dimension n into
another such vector space V of dimensionm. (In fact we won’t specify the dimension
unless we need to).

Adopting the latter point of view will enable us to emphasise on the essential role
of the norm: ∥⃗v∥ which, recall in Rn is usually defined by:

∥(x1, . . . , xn)∥ =

(
n∑

i=1
x2
i

) 1
2

,

and assigns a length to every vector in Rn.

This plays a crucial role in how we define limits precisely, and how we can make
sense of what it means for to vectors to be “close”.

1.1 Basic topology of normed vector spaces
1.1.1 Norms and normed vector spaces

See Section 2.2 in Marsden and Tromba, (replace V,W par Rn, Rm) If it makes
you more confortable, when first reading these notes you may mentally replace V and
W par Rn and Rm

The basic ingredients we will need in this section is a vector space V (you may take
V = Rn) and a way to assign a length to every vectors. This will be a function
V → R+ that we will denote by ∥·∥.

As usual, its definition is modelled on a selection of properties of the usual norm ∥·∥
in Rn:

Definition 1.1: Norms

Let V be a vector space, a norm on V is a function ∥·∥ : V → R+ with the
following properties:

1. u⃗ ∈ V, ∥u⃗∥ = 0 ⇒ u⃗ = 0 (separation),

2. If λ ∈ R, u⃗ ∈ V, ∥λu⃗∥ = |λ|∥u⃗∥ (homogeneity),

3. If u⃗, v⃗ ∈ V, ∥u⃗+ v⃗∥ ⩽ ∥u⃗∥+ ∥⃗v∥ (triangle inequality).
A normed vector space (V, ∥·∥) is a vector space V on which we have specified
a norm || · ||.
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See Section 1.5 (p74) in Marsden and Tromba for the case of Rn with its standard
norm, which is the fundamental example. Observe that on R the standard norm is
just the absolute value function | · |.

Example 1.1. A less obvious, but important, example is the following. Consider
V =Mn(R), and define a norm N on V by:

N(A) = max
X∈Rn,X ̸=0

∥AX∥
∥X∥

.

In this formula :

• AX is the result of the matrix multiplication of A with a non-vanishing column

vector X =

 x1
...
xn

, AX is therefore a column vector in Rn.

• ∥X∥ =

(
n∑

i=1
x2
i

) 1
2

is the standard norm on Rn.

We are therefore assigning the length of a matrix to be the maximum value ||AX||

attains when ||X|| = 1.

Let us check it satisfies all the properties:

• Let A ∈ Mn(R) and assume N(A) = 0. By definition, this means that the
maximum is vanishing or in other words that for all X ∈ Rn,

∥AX∥
∥X∥

= 0 ⇒ ∥AX∥ = 0,

then by the properties of the usual norm on Rn,

∀X ∈ Rn,AX = 0.

A is therefore the 0 matrix.

• If λ ∈ R,A ∈Mn(R),

N(λA) = max
X∈Rn,X ̸=0

λ∥AX∥
∥X∥

= max
X∈Rn,X ̸=0

|λ|
∥AX∥
∥X∥

= |λ| max
X∈Rn,X ̸=0

∥AX∥
∥X∥

.

• By the triangle inequality in Rn, if A,B ∈Mn(R) and X ∈ Rn \ {0}, then:

∥(A+ B)X∥ = ∥AX+ BX∥ ⩽ ∥AX∥+ ∥BX∥,

and so dividing by ∥X∥ we arrive at:
∥(A+ B)X∥

∥X∥
⩽

∥AX∥
∥X∥

+
∥BX∥
∥X∥

,
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for every X ∈ Rn \ {0}, furthermore for all X ∈ Rn \ {0}:

∥AX∥
∥X∥

⩽ max
X∈Rn,X ̸=0

∥AX∥
∥X∥

and similarly for the other term. Consequently, for any X ∈ Rn \ {0}:

∥(A+ B)X∥
∥X∥

⩽ N(A) +N(B),

but this is certainly true for the X at which this maximum is attained so:

N(A+ B) ⩽ N(A) +N(B),

as desired.

This norm is especially interesting because it is “compatible” with matrix multipli-
cation in the sense that it has the property:

N(AB) ⩽ N(A)N(B).

Which you can try to show using the definition of N. ⋄

1.1.2 Open balls and open sets

In many ways, ∥·∥ plays a similar role for a vector space to that which the absolute
value | · | plays on real numbers, and we can imitate the definitions from 1-variable
calculus in this multidimensional setting. Accordingly, if v⃗ and w⃗ are two vectors in
a normed vector space (V, ∥·∥), then the distance between is defined to be:

||⃗v− w⃗||.

Starting from this we will be able to define the notion of limits and continuous func-
tions. However, the topology of a line is considerably simpler than in a higher di-
mensional case, (we basically only have one direction in which to explore). To help us
with our understanding of theses space in higher dimensions it is useful to introduce
the following visual language.

Definition 1.2: Open ball

Let (V, ∥·∥) be a normed vector space, u⃗ ∈ V and r > 0. The open ball of
centre u⃗ and radius r > 0 is the set:

B(u⃗, r) = {⃗v ∈ V, ∥⃗v− u⃗∥ < r}.

Example 1.2. V = R2, ||(x,y)|| =
√
x2 + y2.
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u⃗
r

Figure 5: An open ball B(u⃗, r) in the Euclidean space R2 is the “interior” of disk. The
points of the boundary circle are not in the open ball.

Remark 1.1. In the practice exercises, you will see some other possible norms for R2.

⋄

The intuitive idea of an open ball is that it enables us to explore locally vector space
in all directions around a point, they are the basis for more general sets of this
type.

Definition 1.3: Open sets

A subset U ⊂ V of a normed vector space (V, ∥·∥) is said to be open if:

∀u⃗ ∈ U, ∃δ > 0, B(u⃗, δ) ⊂ U.

i.e. For every point u⃗ in the set U, there exists a “small” open ball centered at
u⃗ and entirely contained in the set U.

Open sets are sets in which one can “zoom in” around any point with a bit of room.

Example 1.3. Open sets are open. (phew!) The idea of the proof is sketched in the
following diagram. Intuitively we just need to choose the size of the ball around v⃗ to

u⃗

r
v⃗
δ

be smaller than the distance to the boundary.

The above diagram suggests that we could choose the radius of the ball to be r−||u⃗−v⃗||
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but to be safer we shall instead choose:

δ =
1
2(r− ||u⃗− v⃗||).

We just need to find a ball that works, not necessarily the best ball.

Let us show formally that this choice works. Let w⃗ ∈ B(⃗v, δ) then we must show that
w⃗ ∈ B(u⃗, r) or in other words:

||w⃗− u⃗|| < r.
We estimate this quantity using the triangle inequality:

∥w⃗− u⃗∥ = ∥w⃗− v⃗+ v⃗− u⃗∥ ⩽ ∥w⃗− v⃗∥︸ ︷︷ ︸
<δ

+ ∥⃗v− u⃗∥︸ ︷︷ ︸,
⩽

1
2(r− ∥⃗v− u⃗∥) + ∥⃗v− u⃗∥ =

1
2(r+ ∥⃗v− u⃗∥)︸ ︷︷ ︸

<r

< r.

Which concludes the proof, note that since we only used the triangle inequality, this
proves it for any open ball in any normed vector space and not just the Euclidean disc.
This is why it was “better” to include the factor 1

2 in the choice of δ, our estimations
with the triangle inequality do not use any particular feature of the Euclidean ball.

⋄

1.2 Limits of functions
1.2.1 The definition

We are now ready to formalise the notion of limit of a function. In this section,
(V, ∥·∥V) and (W, ∥·∥W) are two normed vector spaces and A ⊂ V, we will consider a
function:

f : A ⊂ V →W.

To simplify notation, we will now abandon the arrow notation for elements of V.

We want to make precise the notion that f(a),a ∈ A approaches a value l ∈ W

when x0 approaches some x0 ∈ V but “close” to A. This will be achieved using open
balls:

Definition 1.4: Limits

We write that lim
a→x0

f(a) = l if when given an arbitrary open ball BW(l, ε) ⊂W,
one can always find an open ball BV(x0, δ) ⊂ V that is mapped entirely into
BW(l, ε) by the function f. Formally:

∀ε > 0,∃δ > 0, f(BV(x0, δ) ∩A) ⊂ BW(l, ε).
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In some sense this definition means I can approximate l with arbitrary precision by
all f(a) as long as a lies in some small enough ball B(x0, δ). Another way of saying
this is that f should send points of A as close as we want to the limit l, provided that
these points lie in a small enough ball around x0.

⑤
&

I

↑

D
Figure 6: Diagram illustrating the intuitive idea of the definition of limits.

← End Lecture 3
← Start Lecture 4

Observe that, the limit cannot exist if the intersection B(x0, δ)∩A is empty for some
δ > 0. This is intuively reasonable as such a point cannot be approached from A.
See, for instance the situation in Figure 7.

Hence, the limit can only make sense if this never occurs, the following formal defi-
nition captures this idea:

Definition 1.5: Adherent points

Let A ⊂ V be an arbitrary subset of a normed vector space (V, ∥·∥) and a point
x0 ∈ V (not necessarily in A), then x0 is said to be adherent to A if and only
if, every open ball B(x0, r) meets the set A in at least one point, formally:

∀r > 0,B(x0, r) ∩A ̸= ∅.
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&⑤
Figure 7: This point cannot be “reached” from the set A.

Example 1.4. • Points a ∈ A are clearly adherent to A.

• Boundary points, defined below. (Page 110 in Marsden & Tromba).

⋄

Intuitively, a point will be “on the boundary” if it is simultanenously “close” enough
to A but also to exterior of A V \A, in other words if it is adherent to both A and to
V \A.

Definition 1.6: Boundary points

Let A be a subset of a normed vector space (V, ∥·∥) and x0 ∈ V (once more not
necessarily a point A). x0 is a boundary point if it is adherent to both A and
V \ A, in other words, if every open ball B(x0, r) contains a point of A and a
point that is not in A.

Remark 1.2. It is important to note that boundary sets do not need to be points of A!
For instance, open sets, by definition, cannot contain any of their boundary points.
However, it is clear that the open ball has a boundary...

Figure 8: A boundary point on the open unit ball
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1.2.2 Simple example of limits one can show using the definition

1. The obvious limit: lim
x→x0

x = x0 is true, where we interpret x as the identity
map f : V → V, f(x) = x.

2. The triangle inequality can be used to show that the norm as a function ∥·∥ :
(V, ∥·∥) → (R, | · |) satisfies the limit:

lim
x→x0

∥x∥ = ∥x0∥.

3. The limit coincides with the standard one in the one dimensional case, V =
W = R and ∥·∥V = ∥·∥W = | · |.

1.2.3 Properties of limits

The usual properties of limits carry over without modification to the new case, we
refer the reader to Marsden & Tromba for a complete list (p115 Thm 3). Most of
these properties can be obtained as a special case of the following one that we will
investigate in more detail:

Theorem 1.1: Composition of limits

Let (V1, ∥·∥V1
), (V2, ∥·∥V2

), (V3, ∥·∥V3
) be three normed vector spaces and two

functions:
f : A ⊂ V1 → V2, g : B ⊂ V2 → V3.

Assume that:
• f(A) ⊂ B (so that the composition makes sense)
• x0 is adherent to A and lim

a→x0
f(a) = l ∈ V2,

• lim
b→l

g(b) = L ∈ V3.
Then:

lim
a→x0

(g ◦ f)(a) = g(f(a)) = L.

Proof. Let ε > 0, then using lim
b→l

g(b) = L ∈ V3, there is δ1 > 0 such that

g(BV2(l, δ1) ∩ B) ⊂ BV3(L, ε).

Moreover, using: lim
a→x0

f(a) = l ∈ V2, there is δ2 > 0 such that:

f(BV1(x0, δ2) ∩A) ⊂ BV2(l, δ1).

Since f(A) ⊂ B it follows that f(BV1(x0), δ2) ⊂ BV2(l, δ1) ∩ B. Putting everything
together we see then that:

g(f(BV1(x0), δ2)) ⊂ g(BV2(l, δ1) ∩ B) ⊂ BV3(L, ε),
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which concludes the proof.

The main idea of the proof is depicted in Figure 9:

FIND

using

& Le
geFIND using himf(a)-

U D Ve

&
V3

Figure 9: Composition of limits

1.2.4 For your information (can be skipped, not mentioned in class)

There is a slight subtlety with the notion of limit when a→ x0 ∈ A. One can observe
that in this case, according to our definition either:

lim
a→x0

f(a) = f(x0) or The limit does not exist.

This can be shown as follows, suppose that lim
x→x0

f(x) = l, then taking ε = 1
n for

n ⩾ 1, then one can find δn > 0 such that:

f(BV(x0, δn)) ⊂ B(l,
1
n
).

Since x0 ∈ BV(x0, δn) for all n ⩾ 1, we conclude that for all n ⩾ 1:

∥f(x0) − l∥V <
1
n

,
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but taking the limit n→ ∞ we conclude that:

0 ⩽ ∥f(x0) − l∥V ⩽ 0

so that:
∥f(x0) − l∥V = 0 ⇒ f(x0) = l.

This is not a problem for most applications because we want lim
x→x0

f(x) = f(x0).

Some authors (like Marsden & Tromba) choose to systematically exclude the point
x0 in the definition of the limit. This reason for this is because there are cases in
which the value of f(x0) really pollutes our understanding of the behaviour of f near
x0 even though f actually has a clear limiting behaviour.

Consider as an example a function f defined as follows:

f : R −→ R

x 7−→

{
x2 if x ̸= 2
25 if x = 2

In this example, f clearly behaves like x 7→ x2 near the point x = 2, despite the fact
the function assumes a weird value there. It is clear that there is some sense in
which the limit should be 4, but it will not exist according to our definition.

However, there is a price to pay for choosing to systematically exclude the point x0
when computing the limit: the limit composition theorem as stated above is false
with the alternative definition, although only a small modification makes it correct
again: g needs to be assumed continuous.

It is a question of taste to which definition one might use, we just have to be consis-
tent. For us, during this course, we will not encounter places where the difference
actually matters. Furthermore, the alternative definition chosen by like Marsden
& Tromba is the same as our definition of we restrict the domain of f to A \ {x0}, this
is sometimes written:

lim
x→x0
x ̸=x0

f(x).

For the above example, this limit will exist, and will be equal to 4 reconciling with
the intuition.

Remark 1.3. More generally, we can define the notion of limit in the direction of some
subset B ⊂ A, this would be written:

lim
x∈B

f(x),

and is defined to be the limit of the restriction f|B of the function f to the subset B.
The above case corresponds to B = A \ {x0}.
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1.3 Continuous functions
p 117 in Marsden & Tromba.

We will now generalise the notion of continuous functions to the setting of normed
vector spaces.

Throughout this section, (V, ∥·∥V) and (W, ∥·∥W) are two normed vector spaces.

The standard intuitive description at a precalculus level is that a function is contin-
uous if we can draw it without lifting the pen off the paper. Of course, this intuition
will not carry over to higher dimensions. Continuous functions play a role in topol-
ogy that is similar to the role that linear transformations play in linear algebra:
they enable to compare topologies of different spaces. We will not develop this point
of view further in this course and will simply state the following practical local def-
inition:

Definition 1.7: Continuous functions

Let A ⊂ V, f : A −→W be a function, x0 ∈ A:
• f is said to be continuous at x0 if:

lim
x→x0

f(x) = f(x0).

• f is said to be continuous (on A) if f is continuous at every point of A.

This definition generalises the usual one (so all of the functions you know to be
continuous are still continuous) and will be used to construct new ones in higher
dimensions. For us, continuity will have two main applications. First, determining
limits: if a function is continuous at x0 to find the limit at x0 one simply needs to
evaluate it to find the limit. This is only useful, however, if we have ways to show
that functions are continuous without applying the definition of the limit. This is
the role of the usual rules of continuous functions which will carry over without
modification: algebraic operations (when they make sense) are continuous and we
will find that sums, products... of continuous functions will be continuous.

In order to gain some experience with the definition of the limit and how it can be
used we will explore how to deduce some of these statements from the following
immediate consequence of the composition of limits theorem:

Theorem 1.2

Compositions of continuous functions are continuous.

Let us now show explicitly that:
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In a normed vector space the algebraic operations in V are continuous when
considered as maps:

+ : V × V → V

(v1, v2) 7→ v1 + v2
, · : R× V → V

(λ, v) 7→ λ · v

and the spaces V × V are equipped with the norms:{
∥(v1, v2)∥V×V = ∥v1∥V + ∥v2∥V ,
∥(λ, v)∥R×V = |λ|+ ∥v∥V .

The keys to this fact are in a nutshell the triangle inequality and the homogeneity
property of norms.

Let us begin with addition: we must choose a fixed but arbitrary pair (v1, v2) ∈ V×V
and show that:

lim
(x,y)→(v1,v2)

x+ y = v1 + v2.

For this we fix ε > 0 and we need to show that we can find δ > 0 such that if
(x,y) ∈ BV×V((v1, v2), δ) then: x+ y ∈ BV(v1 + v2, ε).

To find an appropriate δ > 0 we begin by trying to estimate ∥x+ y− (v1 + v2)∥V with
∥(x,y) − (v1, v2)∥V×V , now by the triangle inequality:

∥x+ y− (v1 + v2)∥V ⩽ ∥x− v1∥V+∥y− v2∥V = ∥(x− v1,y− v2)∥V×V = ∥(x,y) − (v1, v2)∥V×V .

Hence, to make: ∥x+ y− (v1 + v2)∥V smaller than ε it suffices to make ∥(x,y) − (v1, v2)∥V×V
smaller than δ = ε. This shows that lim

(x,y)→(v1,v2)
x+ y = v1 + v2.

The scalar multiplication is very similar. Let us fix (λ0, v0) ∈ R × V and show
that:

lim
(λ,v)→(λ0,v0)

λ · v = λ0 · v0.

Once more let us fix ε > 0 and try to estimate ∥λv− λ0v0∥V in terms of ∥(λ, v) − (λ, v0)∥R×V .
The main tool as always for these things is the triangle inequality:

∥λv− λ0v0∥V = ∥λv− λ0v+ λ0v− λ0v0∥V
⩽ |λ− λ0| ∥v∥V + |λ0|∥v− v0∥V .

For the last inequality we have also used the homogeneity property.

Now we are almost done but we must estimate ∥v∥V : the choice δ cannot depend on
it: it is an arbitrary element in the ball of radius δ. For this, observe for instance,
that we can always choose δ < 1. (There may be a more possibly optimal larger value
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of δ that works, but we only need one that works not the best.) Then, one can see by
definition of the norm that if (λ, v) ∈ BR×V((λ0, v), δ) then:

∥v− v0∥V ⩽ ∥v− v0∥V + |λ− λ0| < δ < 1.

Using the triangle inequality, we have:

∥v∥V ⩽ ∥v− v0∥V + ∥v0∥V < 1 + ∥v0∥V ,

so in this case:

∥λv− λ0v0∥V ⩽ |λ− λ0|(1 + ∥v0∥V) + |λ0|∥v− v0∥V .

Now, if we set δ = min(1, ε
2|λ0|

, ε
2(1+∥v0∥V)) then if (λ, v) ∈ BR×V((λ0, v), δ)we have:

∥λv− λ0v0∥V < ε.

Which proves the desired limit and continuity of scalar multiplication with vectors.

Remark 1.4. In the special case where V = R, we have just established that multi-
plication of real numbers is continuous. ← End Lecture 4

← Start Lecture 5

1.3.1 Product spaces

The spaces V × V = {(v1, v2), v1 ∈ V, v2 ∈ V} and R× V, as well as R2 = R× R, that
arose above are examples of product spaces. As we did above, for any normed vector
spaces it is possible to make V ×W a normed vector space with the norm:

∥(v,w)∥V×W = ∥v∥V + ∥w∥W .

The following basic facts about product spaces are used all (often implicitly) on nu-
merous occasions. A product space is equipped with two natural projection maps
that project onto each of its factors:

πV : V ×W → V

(v,w) 7→ v
, πW : V ×W → W

(v,w) 7→ w.

It is a straightforward application of the definition to show that:

Proposition 1.1

The projection maps πV and πW are continuous.

The fundamental theorem about continuous maps in relation to product spaces is
the following characterisation:
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Theorem 1.3: Continuity of functions with values in a product space

Let (Z, ∥·∥Z) be a third normed vector space, then a function:

f : A ⊂ Z → V ×W
z 7→ (h(z),g(z)) .

Then f is continuous if and only if the maps h = ΠV ◦ f and g = ΠW ◦ f are
continuous.

We leave the proof as an exercise to the interested reader.

Remark 1.5. We can generalise everything by induction to a finite number of factors
V1 × V2 × · · · × Vn without any modification.

Example 1.5. In Rn, the coordinate functions (x1, . . . , xn) ∈ Rn 7→ xi ∈ R are con-
tinuous. This, for instance, justifies the statements about functions that are poly-
nomials in the coordinates (x1, . . . , xn) are continuous. ⋄

Using this we can justify theoretically the well known fact:

Proposition 1.2

Let g : A ⊂ Rn → Rm be defined by: g(a) = (g1(a), . . . ,gm(a)),a ∈ A then g
is continuous iff g1, . . . ,gm are continuous.

Armed with these facts, the reader should now be able to justify, by composition of
continuous functions Theorems 3 and 4 in Marsden & Tromba.

1.3.2 Some particularities of finite dimensional spaces

The theory we have developed above, save when explicitly mentioned in the exam-
ples, does not require V or W to be finite dimensional. Finite dimensional spaces
are however special: we get some extra things for free.

First, the attentive reader may have observed that the definitions of limits and con-
tinuous functions depend on the norm you use on either space, and may be concerned
that I tricked you, as the norm for instance used on R2, when viewed above as the
product space R× R is not the usual Euclidean norm.

Luckily for me, there is a deep (magic) theorem:
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Theorem 1.4: Equivalence of norms in finite dimensions

On a finite dimensional space all norms are equivalent.
More precisely, given any two norms ∥·∥1 and ∥·∥2 on a finite dimensional vec-
tor space V, there are constants m,M > 0 such that:

∀v ∈ V, m∥v∥1 ⩽ ∥v∥2 < M∥v∥1.

What this means in practice is that the notions of limit, continuous functions and
open sets we have introduced do not depend on the choice of norms in finite
dimensions. By this I mean, for instance, that if lim

x→x0
f(x) = l for some norm then it

is true for any other norm.

In conclusion, in finite dimensions, we can use any norm we want, and usually one
that makes whatever we want to show as simple as possible.

Remark 1.6. For product spaces V ×W, even in infinite dimensions, the norms:

∥(v,w)∥1 = ∥v∥V + ∥w∥W , , ∥(v,w)∥2 =

√
∥v∥2

V + ∥w∥2
W ,

are always equivalent.

Finite dimensional have an important subclass of continuous functions:

Theorem 1.5

Let u : V → W be a linear transformation between a finite dimensional
normed space V and an arbitrary normed space W. We recall that a map
is linear u when it has the property:

u(λv1 + v2) = λu(v1) + u(v2).

Then u is continuous, furthermore there is a constant M > 0 such that:

∥u(x)∥W ⩽M∥x∥V .

This theorem is proved in a Practice exercise.

The takeaway is, that in finite dimension linear maps are continuous, so for instance:

Example 1.6. Let V = Mn(R), W = M(R) (resp. W = R) then the maps A 7→ tA

and A 7→ tr(A) are linear and therefore continuous since V has finite dimension. ⋄

1.3.3 Continuous functions and open sets

We briefly mention the following fact (for a proof see the exercises) about continuity
and open sets.

34



Theorem 1.6

Let f : V → W be a map between normed vector spaces, then f is continuous
if and only if for every open set U ⊂W, the preimage:

f−1(U) = {x ∈ V, f(x) ∈ U},

is open.

Proof. See Practice Exercises.

This conveys the deeper conceptual meaning of continuity: open sets inW are mapped
into from open sets in V.

For us, it will be useful for recognising that some sets are open.

Example 1.7. • Rn \ {0} is open since it is the preimage of the union of open
intervals (−∞, 0) ∪ (0,+∞) under the continuous map: x 7→ ∥x∥.

• The set of invertible matrices, denoted by GLn(R), is open in Mn(R), as the
preimage of (−∞, 0)∪ (0,+∞) under the map: A ∈Mn(R) 7→ detA ∈ R (which
is continuous as it is a polynomial in the coefficients of A).

⋄

1.3.4 Optional reading: Banach spaces

Save when we discussed equivalence of norms and the continuity of all linear maps,
there has never been any need for us to assume that we are working with finite
dimensional vector spaces. Normed vector spaces of infinite dimension have numer-
ous applications, notably in the study of (partial) differential equations. In these
cases we considered normed vector spaces of functions, for instance, the set of all
continuous real-valued functions on [0, 1], C0([0, 1],R), can be considered a normed
vector space with the norm:

∥f∥∞ = max
x∈[0,1]

|f(x)|.

Whilst up to now, switching to infinite dimensional vector spaces seems pretty harm-
less, for some of the later theorems to carry over, one must make a further topological
assumptions that is automatically satisfied in the finite dimensional case. Indeed,
sometimes in mathematics we need to prove the existence of an object, solution to a
given problem, but can only do so by an iterative limiting procedure: we construct a
sequence that will “converge” to the solution.

The problem is according to the definition of the limit, to prove that something con-
verges to a limit you must find the limit in advance. This is where the notion of
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completeness steps in. One way of expressing the idea is that if a sequence of points
has the property that as n increases the terms of the sequence are getting closer
and closer to one another, then it seems reasonable to assume that there should be
a limit, a normed vector space is said to be complete if this is the case. To formalise
this we use the notion of Cauchy sequence.

Definition 1.8

Let (V, ∥·∥) be a normed vector space and (vn)n∈N a sequence of points of V.
Then (vn)n∈N is said to be a Cauchy sequence if for any open ball B(0, ε), one
can find an integer N ∈ N, such that for all m,n ⩾ N:

vn − vm ∈ B(0, ε).

Cauchy sequences are precisely the sequences who terms are arbitrarily close to one
another for N large enough.

Example 1.8.

If a sequence (vn)n∈N converges to l, then (vn)n∈N is a Cauchy sequence. ⋄

Definition 1.9

A normed vector space (V, ∥·∥) is a said to be complete if every Cauchy se-
quence converges, in this case, V is said to be a Banach space.

Example 1.9. • Finite dimensional normed vector spaces are Banach spaces.

• If (E1, ∥·∥E1
) and (E2, ∥·∥E2

) are Banach spaces then (E1 × E2, ∥·∥E1×E2
) is a Ba-

nach space.

⋄

1.4 Differentiation
Section 2.3 in Marsden & Tromba

1.4.1 Definition and examples

Linear transformations are the first types of functions we encounter when we begin
studying linear algebra. Let us recall once more that these are functions: u : V →W,
with the special property:

∀x,y ∈ V, λ ∈ R,u(λx+ y) = λu(x) + u(y).

They are a direct generalisation of the functions:

x ∈ R 7→ ax ∈ R,
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where a ∈ R, whose graphs are the lines2 y = ax. Indeed, such a function clearly
has the linearity property: a · (λx+ y) = λax+ ay, and conversely, since x = 1 · x for
every x ∈ R, a linear map u : R → R satisfies:

u(x) = u(x · 1) = xu(1)︸︷︷︸
≡a

, x ∈ R.

When V = Rn and W = Rm, then linear maps are entirely determined by a matrix
A defined as follows: Any x = (x1, . . . , xn) can be decomposed as follows

(x1, . . . , xn) =
n∑

i=1
xi(0, . . . , 0, 1︸︷︷︸

ith position

, 0, . . . , 0).

The vectors ei = (0, . . . , 0, 1︸︷︷︸
ith position

, 0, . . . , 0) form a basis of Rn referred to as the

standard or canonical basis of Rn. Introducing this notation, the above equation
can be written:

x = (x1, . . . , xn) =
n∑

i=1
xiei.

Now let u : Rn → Rm be a linear map, and x ∈ Rn be an arbitrary vector, then we
can write:

u(x) = u(

n∑
i=1

xiei) =

n∑
i=1

xiu(ei).

This shows that, generalising what we did above for linear functions in the case
n = m = 1, that u is entirely determined by the values u(ei) ∈ Rm it takes on the
canonical basis vectors.

Since u(ei) can be decomposed onto the canonical basis of Rm we may find constants
Aij ∈ R such that

u(ei) =

m∑
j=1

Ajiej.

We call the matrix with coefficients (Aij) is called the matrix of the linear map u
(expressed in the canonical basis). Observe that it is defined so that:

u(x) =

m∑
j=1

(
n∑

i=1
Ajixi

)
ej

In brackets, you might recognise the expression for the jth component of the column
vector obtained by the matrix multiplication:

AX, where X =

x1
...
xn

.

2I guess this is where the term linear originates from
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So if we identify instead Rn with the set of column matrices, we can represent a
linear transformation as a map:

X 7→ AX.

In conclusion linear maps between Rn and Rm can be thought of as multiplication
maps like in the case n = m = 1 where the real constant a is replaced by a matrix
A.

Remark 1.7. If V,W are arbitrary abstract, but finite dimensional vector spaces,
say dimV = n, dimW = m, then linear maps u can still be represented as ma-
trix multiplication, but the identification requires us to choose a bases (v1, . . . , vn),
(w1, . . . ,wn) of V,W. The only difference with Rn is that, in general, there is no
standard choice of basis thus we need to specify which bases we choose.

Once the choice is made, the coefficients Aij of the matrix forming what is known as
the matrix of u in the bases (v1, . . . , vn), (w1, . . . ,wn), are defined by the equation:

u(vi) =

n∑
j=1

Ajiwj,

and the identification of V with column matrices is:

x =

n∑
i=1

xivi 7→ X =

 x1
...
xn

 .

Amongst all the functions from a vector space V to a vector space W, linear maps
are amongst some of the most well understood. Furthermore, we have seen that
in finite dimensions, they are all examples of continuous functions. Unfortunately,
many functions that we want to understand are not linear...

The key idea of differential calculus, in modern terms, is first order or lin-
ear approximation.

Let us first relate this idea to the usual definition of the derivative of a function in
1 dimensions. Let f : (a,b) → R be a function and t0 ∈ (a,b) the derivative of f at
t0, f ′(t0) is the real number defined by:

f ′(t0) = lim
t→t0

f(t) − f(t0)

t− t0
= lim

h→0

f(t0 + h) − f(t0)

h
.

Remark 1.8. To go from the first quotient to the second note that it is just an appli-
cation of the composition of limits by setting t = t0 + h.

38



One might observe that this definition continues to make sense if f takes its values
in some normed vector space V; in this case, we recall that it is referred to as the
velocity vector.

Nevertheless, if we try to replace (a,b) by some set in Rn (or an abstract vector
space), we will need to take h ∈ Rn, but, division by h does not make sense. However,
we may rewrite the definition of f ′(t0) as follows:

lim
h→0

|f(t0 + h) − f(t0) − hf
′(t0)|

|h|
= 0.

Let us set:
ε(h) =

f(t0 + h) − f(t0) − hf
′(t0)

h
,

then we may write:
f(t0 + h) = f(t0) + hf

′(t0) + hε(h),
where ε(h) → 0 when h→ 0.

Now, the map h → f ′(t0)h is the archetype linear map, and therefore, we can in-
terpret this formula as a “good” linear approximation of f near t0: if h is small, the
value of f(t0 + h) can be approximated the value obtained by adding f ′(t0)h to f(t0).
In this form, the definition can be generalised to functions defined on normed vector
spaces.

Definition 1.10: Differentiability

Let (V, ∥·∥V) and (W, ∥·∥W) be normed vector spaces, U an open subset of V,
f : U ⊂ V →W a function and x0 ∈ U.

• f is said to be differentiable at x0 if there is a continuous linear map
l : V →W such that:

lim
h→0

∥f(x0 + h) − f(x0) − l(h)∥W
∥h∥V

.

• f is said to be differentiable (on U) if it is differentiable at each point.
When l it is unique and called the differential (or derivative) of f at x0, we
write:

l = dfx0 .

Remark 1.9. • We will do calculus on open sets, a reason for this will be given
below.

• In finite dimensions the continuity assumption on linear maps is of course
redundant, as we have seen.

In the special case V = Rn andW = Rm, identified with column vectors, then, given
our discussion above, we have a canonical representation of dfx0 as a matrix using
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the canonical bases of Rn and Rm as described above. This matrix will be called the
Jacobian matrix of f, written

Jac f(x0) = [Df](x0) = Df(x0);

we will determine how to calculate it later.

Example 1.10. • Our preliminary discussion shows that a differentiable func-
tion f : (a,b) → R in the standard sense is differentiable in the new sense (the
definitions are equivalent) and:

dfx0(h) = f
′(x0)h, h ∈ R,

in particular:
dfx0(1) = f ′(x0).

• As one should expect, continuous linear maps u : V → W are differentiable
everywhere, indeed for any x0 ∈ V

u(x0 + h) = u(x0) + u(h),

and therefore:
∥u(x0 + h) − u(x0) − u(h)∥W

∥h∥V
= 0, for any h ̸= 0.

In particular:
dux0 = u.

• We consider a more sophisticated example. Suppose V =W =Mn(R) and use
the norm:

∥A∥ = max
X∈Rn\{0}

∥AX∥Rn

∥X∥Rn

,

recall that this norm has the property:

∥AB∥ ⩽ ∥A∥∥B∥.

Let us consider the map defined on the set of invertible matricesGLn(R) (which
as we have seen is open):

ϕ : GLn(R) −→ GLn(R)
A 7−→ A−1.

We will show, using the definition that ϕ is differentiable and at every point
A ∈Mn(R) its differential is given by:

dϕA(H) = −A−1HA−1, H ∈Mn(R).
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Remark 1.10. This formula generalises to matrices the usual formula ( 1
x)
′ =

− 1
x2 .

← End Lecture 5
← Start Lecture 6Note that, for the moment, the definition does not give us a formula for dϕA

and so we must find a candidate. In general, we can do this by seeking a series
(or polynomial) expansion of the function ϕ(A +H) and identifying the linear
(first order) part in H.

To do this we will use the following fact (for your culture): one can make sense
of series with values in a normed vector space V. Using the norm we can
imitate the definition for numerical series, when V is finite dimensional (or
more generally a Banach space) then we have the following theorem:

Theorem 1.7

If (vn)n∈N is a sequence of points of V, then:
∞∑

n=0
∥vn∥ < +∞ ⇒

∑
n∈N

vn converges.

In this case the series is said to converge absolutely.

We return now to our example, recall, from 1 dimensional calculus that

1
1 + x

=

∞∑
n=0

(−1)xn

as long as |x| < 1. This formula generalises to matrices: if ∥A∥ < 1 then: (I−A)
is invertible and

(I−A)−1 =

+∞∑
n=0

An,

where I is the identity matrix. Formally this makes sense as, supposing the
series converges, then:

(I−A)

+∞∑
n=0

An =

+∞∑
n=0

An −

+∞∑
n=0

An+1 =

+∞∑
n=0

An −

+∞∑
n=1

An = I.

It remains to show that the series converges. For this observe that it follows
from ∥AB∥ ⩽ ∥A∥∥B∥ that for any A ∈Mn(R):

∥An∥ ⩽ ∥A∥n.

Hence, by the triangle inequality, for fixed any N ⩾ 0:
N∑

n=0
∥An∥ ⩽

N∑
n=0

∥A∥n,

41



When ∥A∥ < 1 the standard geometric series shows that
∑+∞

n=0 ∥A∥
n < +∞,

therefore by the comparison theorem for positive series,
∑+∞

n=0 ∥An∥ < +∞ and
taking N→ ∞ above:

+∞∑
n=0

∥An∥ ⩽
+∞∑
n=0

∥A∥n =
1

1 − ∥A∥
.

We shall apply this to our present example, let A ∈ GLn(R) be fixed and choose
H ∈Mn(R) with

∥∥A−1H
∥∥ < 1, (this makes sense since we are only interested in the

limit for H small), then since

(A+H) = A(I+A−1H)

(A+H) is invertible and:

(A+H)−1 = (I+A−1H)−1A−1 =

+∞∑
n=0

(−1)n(A−1H)nA−1.

Here recall that (AB)−1 = B−1A−1.

Remark 1.11. I have been using, without proof, continuity of matrix multiplication,
do you see why?

Taking out the first terms in this series we have:

(A+H)−1 = I−A−1HA−1 +
+∞∑
n=2

(−1)n(A−1H)nA−1.

The first term is first order (linear) in H:

−A−1(λH1 +H2)A
−1 = −λA−1H1A

−1 −A−1H2A
−1.

Since the rest of the terms contain at least two factors of H, they will not be linear
in H and so our candidate for the derivative is indeed dϕA(H) = −A−1HA−1. It
remains to see that the linear approximation is good enough, as required by the def-
inition. For this we must estimate, forH small (i.e. ∥AH∥−1 < 1) and non-vanishing:

∥ϕ(A+H) − ϕ(A) − dϕA(H)∥
∥H∥

=

∥∥∥∥∥
+∞∑
n=2

(−1)n(A−1H)nA−1

∥∥∥∥∥
∥H∥

.

but∥∥∥∥∥
+∞∑
n=2

(−1)n(A−1H)nA−1

∥∥∥∥∥ ⩽
+∞∑
n=2

∥A∥−n−1∥H∥n = ∥H∥2
+∞∑
n=0

∥A∥−n−3∥H∥n︸ ︷︷ ︸
converges for ∥H∥ small enough

.
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Hence it follows that:∥∥∥∥∥
+∞∑
n=2

(−1)n(A−1H)nA−1

∥∥∥∥∥
∥H∥

⩽ ∥H∥
+∞∑
n=0

∥A∥−n−3∥H∥n −→
H→0

0.

Which proves at the same time differentiability of ϕ at every point A and that the
differential is as claimed. ⋄

Let us consider one more fundamental example:

Example 1.11. Recall that a map B : V × V →W is said to be bilinear if it is linear
in both variables, i.e.{

B(λv1 + v2, v3) = λB(v1, v3) + B(v2, v3),
B(v1, λv2 + v3) = λB(v1, v2) + B(v1, v3).

These maps can be thought of as obeying the same rules as a product (which might
not commute). It can be shown that a bilinear map is continuous when there is a
constant M > 0 such that:

∥B(v1, v2)∥W ⩽M∥v1∥V∥v2∥V .

Remark 1.12. This is always the case in finite dimensions.

Remark 1.13. One may, for instance, define B to be the map of matrix multiplication:
(A1,A2) ∈Mn(R)×Mn(R) 7→ A1A2 ∈Mn(R).

We will justify that:

Any continuous bilinear map B : V × V →W is differentiable everywhere and
at any point (v1, v2) ∈ V × V

dB(v1,v2)(h1,h2) = B(v1,h2) + B(h1, v2).

This general statement is at the root of all the “product rules”. In essence, any
product will satisfy the product rule.

In this instance, it is convenient to use a different (but equivalent) norm on the
product space V × V namely:

∥(v1, v2)∥V×V =

√
∥v1∥2

V + ∥v2∥2
V .
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Now, if (h1,h2) ∈ V × V then let us calculate:

B(v1 + h1, v2 + h2) = B(v1 + h1, v2) + B(v1 + h1,h2)

= B(v1, v2) + B(h1, v2) + B(v1,h2)︸ ︷︷ ︸
linear part in (h1,h2)

+B(h1,h2).

We now need to estimate:

∥B(v1 + h1, v2 + h2) − B(v1, v2) − (B(h1, v2) + B(v1,h2))∥W = ∥B(h1,h2)∥W .

But:

∥B(h1,h2)∥W ⩽M∥h1∥V∥h2∥V ⩽
M

2
(
∥h1∥2

V + ∥h2∥2
V

)
=
M

2 ∥(h1,h2)∥2
V×V .

Remark 1.14. If a,b ∈ R, then since (a− b)2 ⩾ 0 it follows that:

2ab ⩽ a2 + b2.

We have used this fact above.

Now we conclude that:
∥B(h1,h2)∥W
∥(h1,h2)∥V×V

⩽
M

2 ∥(h1,h2)∥V×V −→
(h1,h2)→(0,0)

0.

Which proves again that B is differentiable everywhere and the derivative is as
claimed. ⋄

1.5 Directional and partial derivatives
1.5.1 Directional derivatives

Let f : U ⊂ (V, ∥·∥V) → (W, ∥·∥W) be a function defined on an open setU of the vector
space V.

There is another way in which one could generalise the derivative to higher dimen-
sions: one might try to pick some direction defined by a vector h ∈ V and start to
walk in a straight line away from x0 in the direction defined by h. This means we
will walk along the curve φ defined by γ(t) = x0 + th, t ∈ R.

Observe here that the choice of h is an arbitrary element of V, indeed, whilst the
unit vector h

∥h∥V
controls the direction in which one walks, the norm ∥h∥V controls

how fast we run in that direction and we can certainly run as fast as we want in any
direction.

Now whilst the curve makes for all t ∈ R, x0 + th, it may certainly leave U at some
point. However, since U is assumed open, x0 + th will be an element of U as long as
t is small enough.
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therinctionenof
exploration can

be arbitary even

if it leaves
I

.

Figure 10: Directional derivative

This is because by definition of open sets, if x0 ∈ U then there is some open ball
B(x0, δ) that is entirely contained within U. Hence, x0 + th will stay in U at least as
long:

|t| <
δ

∥h∥V
.

This is illustrated in Figure 10. Observe that this is coherent with the fact that the
faster I run along the curve, the less time I will have before I leave U.

Hence, the composition φ(t) = f ◦ γ will make sense as long as t ∈ (− δ
∥h∥V

,+ δ
∥h∥V

)

and we can consider its tangent vector at t = 0, this leads to:

Definition 1.11: Directional derivative

Using the notations above, the directional derivative in the direction of h of f
at x0 Dhf(x0) =

∂f
∂h(x0) is defined to be:

φ ′(t) = lim
t→0

f(x0 + th) − f(x0)

t
,

if the limit exists.

An important question we must answer is:

Suppose f is differentiable, what is the link, if any, between these derivatives
and dfx0?

For this we use our composition of limits theorem, when t→ 0 when th→ 0 so from
the definition of the derivative (substituting h for th, where h is now fixed and t is
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the variable), we have:

lim
t→0

∥f(x0 + th) − f(x0) − dfx0(th)∥W
∥th∥V

= 0.

Now, by the homogeneity property of norms, it follows that ∥th∥V = |t|∥h∥V . Fur-
thermore, dfx0 is a linear function so: dfx0(th) = tdfx0(th). So we can conclude
that:

lim
t→0

∥∥∥∥f(x0 + th) − f(x0) − tdfx0(h)

t∥h∥V

∥∥∥∥
W

= lim
t→0

∥∥∥∥f(x0 + th) − f(x0)

t∥h∥V
−
dfx0(h)

∥h∥V

∥∥∥∥
W

= 0.

Since multiplication by a scalar is continuous, and h is fixed, we can multiply the
expression in the limit by ∥h∥V and conclude that:

lim
t→0

∥∥∥∥f(x0 + th) − f(x0)

t
− dfx0(h)

∥∥∥∥
W

= 0.

Hence, we conclude:

Proposition 1.3

When f is differentiable at x0, directional derivatives exist in all directions h
and:

Dhf(x0) =
∂f

∂h
(x0) = dfx0(h).

Remark 1.15. • An immediate consequence is that we have also justified the
uniqueness of dfx0 since we can calculate it from its directional derivatives in
any direction. To obtain this uniqueness is part of the reason why we assume
U open.

• When dimV < +∞, dfx0 is completely determined by the directional deriva-
tives of f in the directions of some basis (e1, . . . , en).

1.5.2 Partial derivatives for functions defined on V = Rn

When V = Rn, as we have already observed, Rn possesses a canonical basis given
by the vectors:

ei = (0, . . . , 0, 1
↑

ith position

, 0, . . . , 0).

Definition 1.12: Partial derivatives

Let f : U ⊂ Rn → W be a function defined on an open set U. Let x0 ∈ U, then
the ith partial derivative of f is defined by:

∂f

∂xi
(x0) = Dei

f(x0).
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When f is differentiable at x0, we can calculate completely dfx0 from the partial
derivatives, indeed, if

h = (h1, . . . ,hn) =
n∑

i=1
hiei,

then, by linearity:

dfx0(h) = dfx0(

n∑
i=1

hiei) =

n∑
i=1

hidfx0(ei) =

n∑
i=1

hi
∂f

∂xi
(x0).

A notation that is often used to reconcile with some usages in the scientific literature
is the following.

Define the linear map:
dxi : Rn → R

(x1, . . . , xn) 7→ xi.

Then in this case:
dxi(h) = hi,

and plugging this into expression we found for dfx0(h) we arrive at:

dfx0(h) =

n∑
i=1

∂f

∂xi
(x0)dxi(h).

Hence, we can write:

dfx0 =

n∑
i=1

∂f

∂xi
(x0)dxi.

.We have shown that if f is differentiable at x0 then its partial derivatives
exist in every direction and determine dfx0 . However, the converse is false:
even if all the partial derivatives exist f might not be differentiable. e.g. the
linear approximation isn’t good enough.

To illustrate this, consider the real valued function defined on R2 by:

f(x,y) =


xy√
x2+y2

(x,y) ̸= (0, 0),

0 (x,y) = (0, 0),

then f is continuous on R2, indeed, for any point (x,y) ̸= (0, 0) its expression is a
rational function and therefore continuous where defined.
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The only point that might pose problem is (0, 0) but there:

0 ⩽
|xy|√
x2 + y2

⩽
1
2
√
x2 + y2 →(x,y)→0 0,

so
lim

(x,y)→(0,0)
f(x,y) = 0 = f(0, 0).

For the same reason as above, differentiability is clear when (x,y) ̸= (0, 0), so we
only need to study the point (0, 0).

Now, for any t ∈ R, f(t, 0) = f(t, 0) = 0 so the partial derivatives ∂f
∂x(0, 0) = ∂f

∂y(0, 0) =
0 both vanish. This means, that if f is differentiable at (0, 0), df(0,0) = 0.

It remains to check that the linear approximation is good enough, as required by the
definition, let us compute:

|f(h1,h2) − f(0, 0)|√
h2

1 + h
2
2

=
h1h2
h2

1 + h
2
2

,

and it is standard exercise to check that this limit does not exist. Hence f is not
differentiable at the point (0, 0).

It turns out however, that if we assume that the partial derivatives are well-behaved,
then we recover a partial converse:

Theorem 1.8: Continuous partial derivatives

Let f : U ⊂ Rn → (W, ∥·∥W) be a function with continuous partial derivatives
∂f
∂xi

on U then f is differentiable on U.
← End Lecture 6

1.5.3 Complement: A more general notion of partial derivative (can be
skipped)

In this optional reading segment, we discuss another notion of partial derivative that
can sometimes be useful, at least to simplify notation. For instance, in practice, if
a function is defined on Rn, then it can sometimes be convient to group together the
k first variables and then the n − k remaining ones: this amounts to writing Rn as
the product space: Rn = Rk × Rm.

Let us therefore study a function f defined on an open subset of the product space
E1 × E2 of two normed vector spaces, (E1, ∥·∥E1

), (E2, ∥·∥E2
). As usual we will equip

E1 ×E2 with the norm ∥(x,y)∥E1×E2
= ∥x∥E1

+ ∥y∥E2
. Let V be a third normed vector

space (V, ∥·∥V), and consider a function:

f : U ⊂ E1 × E2 −→ V

(x,y) 7−→ f(x,y)

48



Now, just like, when x,y are real variables, we can consider the functions obtained
by fixing one these vector valued variables. To formalise this, let (x0,y0) ∈ E1 × E2
and define two maps: 

j2x0 : E2 −→ E1 × E2
y 7−→ (x0,y)

,

j1y0 : E1 −→ E1 × E2
x 7−→ (x,y0)

.

If the function f ◦ j1y0 (resp. f ◦ j2x0) ix differentiable at x0 (resp. y0), then we define
the partial derivative of f at (x0,y0) by:

∂f

∂x
(x0,y0) = d(f ◦ j1y0)x0 ,

(
resp. ∂f

∂y
(x0,y0) = d(f ◦ j2x0)y0

)
.

. It is important to observe that although the notation for the partial deriva-
tive is the same, these are no longer just vectors and have themselves been
upgraded to continuous linear functions ! Recall that the set of continuous
linear functions between two vectors spaces E → F is written L(E, F), so we
have:

∂f

∂x
(x0,y0) ∈ L(E1,V), ∂f

∂y
(x0,y0) ∈ L(E2,V).

The space of continuous linear functions L(E, F) can be made a normed space with
the norm:

∥u∥L(E,F) = sup
x∈E
x ̸=0

∥u(x)∥F
∥x∥E

.

It is a straightforward exercise to show that the maps j1y0 and j2x0 are differentiable
so it will follows from the chain rule that if f is differentiable then it has partial
derivatives.

Just as in the previous case if a function f has continuous partial derivatives on U
that is the maps:

∂f
∂x : E1 × E2 −→ L(E1,V)

(x,y) 7−→ ∂f
∂x(x,y)

,
∂f
∂x : E1 × E2 −→ L(E2,V)

(x,y) 7−→ ∂f
∂y(x,y)

are continuous then f is differentiable at U.

1.6 The chain rule ← Start Lecture 7

We are now going to discuss the composition theorem for differentiable functions,
which is an extremely important result, both for theory and applications. We state
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it first in its general form and then we will discuss in detail the specific case for the
vector spaces Rn.

Theorem 1.9: The chain rule

Let E1,E2,E3 be normed vector spaces, U1 ⊂ E1,U2 ⊂ E2 open subsets and:

f : U1 ⊂ E1 → E2, g : U2 ⊂ E2 → E3,

with f(U1) ⊂ U2. Assume f is differentiable at x0 and g is differentiable at
f(x0), then the composition (g ◦ f) is differentiable at x0 and:

d(g ◦ f)x0 = dgf(x0) ◦
↑

composition
of linear maps

dfx0 .

In some sense, d distributes through ◦.

We begin with some examples:

Example 1.12. • Let f(a,b) → (c,d) and g : (c,d) → R satisfy the hypothesis
above, then:

dfx0 = f ′(x0)dx, dgf(x0) = g
′(f(x0))dx.

Remark 1.16. In 1 dimension the dx is just the identity map: dx(h) = h.

So by the above theorem:
d(g ◦ f)x0 = g ′(f(x0))f

′(x0)dx,
Since the link between the differential and the standard derivative is (g ◦
f) ′(x0) = d(g ◦ f)x0(1), we recover the usual formula:

(g ◦ f) ′(x0) = g
′(f(x0))f

′(x0).

• Let us consider now the case of a curve in R2:
γ : (a,b) → R2, γ(t) = (x(t),y(t)).

Remark 1.17. These are usually interpreted as representing the trajectory of
a particle, here in a plane.

And consider V : R2 → R a scalar valued function (thought of as a potential of
some sort), then:

dγt = (x ′(t),y ′(t))dt, dV(x,y) =
∂V

∂x
(x,y)dx+ ∂V

∂y
(x,y)dy.
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Remark 1.18. Again, in one variable dt is just the identity map h 7→ h, in two
variables dx : (hx,hy) 7→ hx and dy : (hx,hy) 7→ hy. In particular:

dx((x(t),y ′(t))dt) = x ′(t)dt,

and similarly for dy.

Therefore, by the chain rule:

d(V ◦ γ)t =
∂V

∂x
(x,y)x ′(t)dt+ ∂V

∂y
(x,y)y ′(t)dt,

evaluating this at h = 1, we find that:

(g ◦ γ) ′(t) = d(V ◦ γ)
dt

(t) =
∂V

∂x
(x,y)dx

dt
(t) +

∂V

∂y
(x,y)dy

dt
(t).

Remark 1.19. (g ◦ γ) ′(t) is interpreted as the instantaneous rate of change of the
potential V felt by the particle at time t.

⋄

Derivatives of functions into a product space (optional reading)

Assume (Z, ∥·∥Z), (V, ∥·∥V) and (W, ∥·∥W) are normed vector spaces. Recall that the
projection maps: πV : V ×W → V and πW : V ×W →W are continuous and linear
and so differentiable everywhere and:

dπV = πV , dπW = πW .

Just as was the case for continuous functions, we have the following characterisation
of differentiability for these functions:

Theorem 1.10: Differentiability in product spaces

Let f : U ⊂ Z → V ×W be a function defined on an open set U of Z. It can be
written:

f(z) = (fV(z), fW(z)), z ∈ U

where fV = πV ◦ f and fW = πW ◦ f. Then f is differentiable at z0 ∈ Z if and
only if the functions fV : U → V and fW : U → W are differentiable at z0,
moreover:

dfz0 = (dfVz0 ,dfWz0).

The moral of the story is that we can differentiate component by component.
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Proof. If f is differentiable at z0 then, by the chain rule, fV and fW are differen-
tiable at z0. Conversely, assume fV and fW are differentiable at z0 working with the
product norm ∥(v,w)∥V×W = ∥v∥V + ∥w∥W , we estimate:∥∥f(z0 + h) − f(z0) − (dfVz0(h),dfWz0(h))

∥∥
V×W

∥h∥Z

=

∥∥(fV(z0 + h), fW(z0 + h)) − (fV(z0), fW(z0)) − (dfVz0(h),dfWz0(h))
∥∥
V×W

∥h∥Z
,

=

∥∥(fV(z0 + h) − fV(z0) − dfVz0(h), fW(z0 + h) − fW(z0) − dfWz0(h))
∥∥
V×W

∥h∥V
.

Finally, by definition of the norm ∥·∥V×W this is simply:∥∥fV(z0 + h) − fV(z0) − dfVz0(h)
∥∥
V

∥h∥V
+

∥∥fW(z0 + h) − fW(z0) − dfWz0(h)
∥∥
V

∥h∥V
,

and both of these terms vanish when h → 0 by assumption, which proves the theo-
rem.

– End of optional reading

We have the following important result:

Proposition 1.4

If f : U ⊂ V → Rm,U open in V then if we write: f(v) = (f1(v), . . . , fm(v)), then:
f is differentiable at v0 ∈ V if and only if the real-valued functions f1, . . . , fm
are differentiable at z0 and:

dfv0 = (df1v0 , . . . ,dfmv0).

One obtains the differential of an Rm valued map by differentiating each of its com-
ponents separately.

1.7 The Jacobian matrix
Recall that any linear map u : Rn → Rm can be represented by a matrix A. (See the
discussion at the beginning of Section 1.4.1.)

Since, by definition, the differential dfx0 of a function f : U ⊂ Rn → Rm is a linear
map from Rn → Rm therefore can be described by a matrix. This m × n matrix is
known as the Jacobian matrix. We are now ready to determine its components.
Let us write for any x = (x1, . . . , xn) ∈ U:

f(x) = (f1(x), . . . , fm(x))
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We need to determine the components of dfx0(ei) =
∂f
∂xi

(x0), where ei is the ith vector
in the canonical basis of Rn but we have just seen that:

dfx0(ei) = (df1x0(ei), . . . ,dfmx0(ei)) = (
∂f1
∂xi

(x0), . . . , ∂fm
∂xi

(x0).

So the components of the Jacobian matrix are:

(Jac f(x0))ij =
∂fi
∂xj

(x0),

or in other words:

Jac f(x0) =


∂f1
∂x1

(x0)
∂f1
∂x2

(x0) . . . ∂f1
∂xn

(x0)

∂f2
∂x1

(x0)
. . . ... ...

... . . . ... ...
∂fm
∂x1

(x0) . . . . . . ∂fm
∂xn

(x0)

 .

Example 1.13. Let f(x,y, z) = (x2y, 3x+ z, z2 − 1,y sin2(z)) then:

Jac f(x,y, z) =


2xy x2 0

3 0 1
0 0 2z
0 sin2(z) 2y cos(z) sin(z)


⋄

Remark 1.20. The Jacobian matrix exists as soon as the partial derivatives exist,
even when f is not differentiable.

If we identify vectors in Rn with column vectors, then the differential dfx0 is repre-
sented by the linear transformation:

h =

h1
...
hn

 7→ Jac f(x0)h.

So the directional derivatives are obtained by standard matrix multiplication. Sim-
ilarly the definitions give the following matrix version of the chain rule:

Theorem 1.11: Chain rule with Jacobian matrices

Let f : U1 ⊂ Rn → Rm, g : U2 ⊂ Rm → Rp, U1,U2 open and f(U1) ⊂ U2.
Suppose f differentiable at x0 ∈ U, g differentiable at f(x0), then g ◦ f is differ-
entiable at x0 and:

Jac (g ◦ f)(x0) = Jac g(f(x0))Jac f(x0).

Remark 1.21. The multiplication above is the standard matrix multiplication. ← End Lecture 7
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1.8 The gradient vector field, level sets ← Start Lecture 8

We will now proceed to apply the general theory to specific cases that often arise
in applications. Our first step is going to be the case of scalar fields, which are
functions with values in R. These are used to model things like energy potential
fields, electrostatic potentials, or the temperature in a region of space. In fact, we
will now restrict to the special case of Euclidean spaces E, with their Euclidean norm:
||u|| =

√
⟨u,u⟩, where we will use the notation ⟨·, ·⟩ to denote the inner/scalar/dot

product.

1.8.1 The gradient of a scalar field in Euclidean space

Feel free to set E = Rn. When f : U ⊂ E → R is a differentiable function, then
at any point of x0, dfx0 is a continuous real-valued linear map. In fact, the vector
space L(E,R) of all continuous linear functions is particularly important in some
applications (for instance momentum in physics is more naturally an element of the
dual) and is known as the dual space of E; it is written E ′.

In some sense one may think of elements of E ′ as “measuring tools” that can assign
to any point of E a real-value. In a Euclidean space we can use the inner product to
produce elements of E ′. Indeed, if v ∈ E then one can define a linear map by:

lv(x) = ⟨v, x⟩, x ∈ E.

It turns out that any element of E ′ can be obtained in this way.

Theorem 1.12: Riesz representation theorem

The mapping:
E → E ′

v 7→ lv = ⟨v, ·⟩,
is a vector space isomorphism.
In other words, given any linear map u : E→ R one can find a unique vector v
such that:

∀h ∈ E,u(h) = ⟨v,h⟩.

Example 1.14. You have already encountered this phenomenon in elementary ge-
ometry in space. Let P be a vector plane in R2, then it is defined by an equation:

ax+ by+ cz = 0.

Now let us set:
u(x,y, z) = ax+ by+ cz,

then u is a linear function from R3 → R. Indeed:

λ(x1,y1, z1) + (x2,y2, z2) = (λx1 + x2, λy1 + y2, λz1 + z2),
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and:

u(λx1+x2, λy1+y2, λz1+z2) = a(λx1+x2)+b(λy1+y2)+c(λz1+z2) = λu(x1,y1, z1)+u(x2,y2, z2).

However, if n⃗ = (a,b, c) and we set x⃗ = (x,y, z) we have:

u(x,y, z) = ⟨n⃗, x⃗⟩.

Here the duality between E and E ′ by the fact that one can either describe the plane
P with its equation, or by specifying a normal vector n⃗. ⋄

In our present context, we will use the duality to replace the differential by a vector
field;

Definition 1.13: Gradient of a scalar field

The gradient vector at x0 ∈ U of a differentiable scalar field f : U ⊂ E → R is
the unique vectora −→

∇f(x0) ∈ E such that:

∀h⃗ ∈ E, dfx0(h⃗) = ⟨
−→
∇f(x0), h⃗⟩.

acan also be written
−−−→
gradf(x0) or ∇f(x0)

Remark 1.22. The advantage of this definition is that it is basis independent !

Example 1.15. We now study the fundamental example where E = Rn is the stan-
dard Euclidean space. Now if f : U ⊂ Rn → R is differentiable then we know that:

dfx0 =

n∑
i=1

∂f

∂xi
(x0)dxi,

or applied to a vector h⃗ = (h1, . . . ,hn):

dfx0(h⃗) =

n∑
i=1

∂f

∂xi
(x0)h

i = ⟨
n∑

i=1

∂f

∂xi
(x0)e⃗i, h⃗⟩,

where e⃗i are the canonical basis vectors. Therefore we conclude that:

−→
∇f(x0) =

n∑
i=1

∂f

∂xi
(x0)e⃗i,

or written as a column vector:

−→
∇f(x0) =


∂f
∂x1

(x0)
...

∂f
∂xn

(x0)

 .
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Remark 1.23. One can observe that this is just the transpose of the Jacobian ma-
trix. In fact, if we identify vectors of Rn with column matrices then the elements
of its dual space (Rn) ′ are naturally identified with row matrices. In this special
case, the identification of an element of (Rn) ′ with an element of Rn by the Riesz
representation theorem is just obtained by taking the transpose.

⋄

If we consider the map: −→
∇f : U −→ Rn

x 7−→
−→
∇f(x)

,

it is an important example of a vector field on Rn.

It encodes local data about the behaviour of f near each point of U, and is visualised
as “attaching an arrow” to each point x0 of Rn. One could say that it lives in the
tangent space to x0 ∈ U, the set of all tangent vectors at x0 of curves in U, but U
being open we can walk in straight lines in any direction so Tx0U ≃ Rn.

For instance, in R2, the gradient vector field of the function:

f(x,y) = e− cos2 x+sin2 y

is represented in Figure 11.
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Figure 11: Gradient vector field of the scalar field: f(x,y) = e− cos2 x+sin2 y.

1.8.2 Level sets and the interpretation of the gradient vector field

We will now study how to interpret the gradient vector field. Let us reflect on the
following question, how can I obtain a visual understanding of a scalar field if I
“live” in its domain. For instance, suppose I want to understand the temperature
distribution at each point in space, that I model by a function T which assigns to
each point (x,y, z) in space the temperature T(x,y, z) at that point. Now this is a
function:

T : R3 → R,

Hence, its graph will live in R3 ×R = R4, but I cannot draw in 4 dimensions !

Idea: We can look at places in R3 where T is constant ! These are known as the level
sets:

Definition 1.14: Level sets

Let f : U ⊂ Rn → R be a differentiable scalar field on an open set U of Rn, the
sets:

f−1({c}) = {x ∈ Rn, f(x) = c}, c ∈ R,

are known as the level sets of f.
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Example 1.16. Consider:

f : R2 −→ R
(x,y) 7−→

√
x2 + y2 ,

then its level sets are concentric circles as shown below:

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

⋄

We have also represented the gradient vector field of this scalar field on the same
diagram. Observe that the arrows representing this vector field appear to be or-
thogonal to the circles, i.e. perpendicular to the tangent line of the circle at each
point.

This means that if h⃗ is a vector parallel to the tangent line at x0 then:

dfx0(h⃗) = ⟨
−→
∇f(x0), h⃗⟩ = 0,

i.e. the directional derivative in the direction h⃗ will vanish. Intuitively, this makes
sense, an infinitesimal displacement in the direction of the tangent line will remain
on the circle, where f is constant.

Another way of formalising this is to say that the tangent vector γ ′(0) to any curve
γ : (−ε, ε) → R2 with γ(0) = x0 that remains restricted the circle, will be parallel to
the tangent line to the circle at x0.

We generalise this as follows:

58



Definition 1.15: Tangent vector space to level surfaces

Let L = {x ∈ U, F(x) = c} where c ∈ R and F : U ⊂ Rn → R is a differentiable
scalar field with continuous partial derivatives. Let x0 ∈ L , we call x0 a
regular point of L if −→∇f(x0) ̸= 0.
In this case, the tangent vector space to L at x0 Tx0L is defined to be the set
of tangent vectors to curves drawn on L , i.e.

v⃗ ∈ Tx0 L ⇔ ∃ γ : (−ε, ε) −→ R
t 7−→ γ(t)

, γ(0) = x0, γ ′(t) = v⃗.

Remark 1.24. We will later show that Tx0L is a vector space, but we do not yet have
the tools for that.

Proposition 1.5

Let L , x0, F satisfy the conditions of the previous theorem, then:

Tx0L = {h⃗ ∈ Rn, ⟨−→∇F(x0), h⃗⟩ = 0}.

Proof. We give only a partial justification, once more the other direction requires a
new tool.

Let γ : (−ε, ε) −→ L be some curve with γ(0) = x0, then for every t ∈ R,

(F ◦ γ)(t) = c,

hence is constant therefore:
(F ◦ γ) ′(t) = 0.

However, by the chain rule:

0 = (F ◦ γ) ′(0) = d(F ◦ γ)0(1) = dFx0(γ
′(0)) = ⟨

−→
∇F(x0),γ ′(0)⟩.

So this shows that TxL ⊂ {h⃗ ∈ Rn, ⟨−→∇F(x0), h⃗⟩ = 0}; the other inclusion will be
shown later.

← End Lecture 8
← Start Lecture 9

The reader might have observed that I defined the tangent space as a vector space.
However, it is of course intrinsically an object linked to the point x0 ∈ L : it describes
all the tangent vectors at that point. For this reason, we actually represent it in Rn

as a plane passing through the point x0. In other words, we translate the vector
plane (which contains the zero vector) to the point x0. This is also called the tangent
space, or affine tangent space to distinguish from the tangent vector space: the latter
defines the direction of the affine space.
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Definition 1.16: (Affine) Tangent Space

Let L , x0, F satisfy the conditions above, then the affine tangent space T̃x0L
at x0 is defined as follows:

x ∈ T̃x0L ⇔ x− x0 ∈ Tx0L .

Remark 1.25. This is completely analogous to the fact that the tangent vector to a
point M on a curve is systematically represented as a vector attached to the point
M.

Combining this with the characterisation of the vector tangent space in terms of the
gradient vector we have:

Proposition 1.6: Equation of the affine tangent plane

x ∈ T̃x0L ⇔ ⟨
−→
∇f(x0), x− x0⟩ = 0.

In particular if x = (x1, . . . , xn) and x0 = (x0
1, . . . , x0

n) then the equation of the
plane is given by:

n∑
i=1

∂f

∂xi
(x0)(xi − x

0
i) = 0

Example 1.17. • Let f : R2 → R.

The graph of f can be described as a 0 level set of the function F : (x,y, z) 7→
f(x,y) − z, it follows that equation of the (affine) tangent plane at (x0,y0, z0 =
f(x0,y0)) is given by:

∂f

∂x
(x0,y0)(x− x0) +

∂f

∂y
(x0,y0)(y− y0) − (z− f(x0,y0)) = 0.

• The tangent line to the circle x2 +y2 = 1 at the point ( 1√
2 , 1√

2) is defined by the
equation:

(x−
1√
2
) + (y−

1√
2
) = 0.

⋄

We return now to the discussion about interpreting the gradient. We have estab-
lished that the gradient vector field −→

∇F of a scalar field F is, when non-vanishing,
orthogonal to the level sets of F. By this we mean precisely, that it is at each point x0
orthogonal to the tangent plane Tx0F

−1(F(x0)). The tangent space contains the vec-
tors at x0 in which the rate of change of F is 0, as these are the directions in which
infinitesimal displacements will keep us on the level set to which x0 belongs. The
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gradient on the other hand is orthogonal to these and defines the direction in which
F is increasing the most, indeed:

⟨
−→
∇f(x0), h⃗⟩ =

∥∥∥−→∇f(x0)
∥∥∥∥h∥ cos θ,

where θ is the geometric angle between the two vectors. This is maximal when
cos θ = 1 i.e. h⃗ is parallel and points the same way as −→

∇f(x0). One can also observe
from this that:

∥∥∥−→∇F(x0)
∥∥∥ = max

h⃗ ̸=0⃗

∣∣∣⟨−→∇F(x0), h⃗⟩
∣∣∣∥∥∥h⃗∥∥∥ = max

h⃗ ̸=0⃗

∣∣∣dF(x0)(h⃗)
∣∣∣∥∥∥h⃗∥∥∥ .

1.9 The inverse function and implicit function theorems
Above, we have introduced level sets as a means of understanding a scalar field,
however, they are geometric objects of interest in their own right. It can often hap-
pen that we are interested in subsets of Rn that are defined by one or more equa-
tions: 

F1(x1, . . . , xn) = 0,
...

Fm(x1, . . . , xn) = 0,

where F1, . . . , Fm are real-valued differential functions. Observe that once more we
can consider this as the equation:

F(x) = 0

where F : Rn → Rm and F(x) = (F1(x), . . . , Fm(x)). For instance, the n-sphere is
defined by the equation:

x2
1 + · · ·+ x2

n − 1 = 0

There are two very important theorems that help us understand these sets, and
that can be thought of as a generalisation of well known facts in the theory of linear
equations.

1.9.1 The inverse function theorem

Let us first consider a linear function F : Rn → Rn. If c ∈ Rn, then the equa-
tion:

F(x) = c,
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is the same as n-linear equations with n-unknowns. Indeed, F can be represented
by a matrix A = (aij) and we can rewrite the equation:

Ax = c ⇔


a11x1 + · · ·+ a1nxn = c1,
a21x1 + · · ·+ a2nxn = c2,
...
an1x1 + · · ·+ annxn = cn.

Now, we know that this can be solved, and has a unique solution, when the matrix
A is invertible. The first theorem we will state generalises this to the case where
F is differentiable, but the price we have to pay is that we will generically only be
able to solve it locally, in a neighbourhood of a given point x0. To make the theorem
statement as intuitive as possible let us introduce the following notion:

Definition 1.17: Neighbourhoods

Let (E, ∥·∥) be a normed vector space and x0 ∈ E then
• a set W neighbourhood is called a neighbourhood of x0 if and only if

it contains an open set U such that x0 ∈ U ⊂W.
• An open neighbourhood is an open set such that x0 ∈ U.

Example 1.18. • An open set is a neighbourhood of any of its points.

• The closed unit ball B̄(0, 1) = {(x,y) ∈ R2, x2 + y2 ⩽ 1} is a neighbourhood of
(0, 0) but not of ( 1√

2 , 1√
2).

⋄

Theorem 1.13: The inverse function theorem

Let F : U ⊂ Rn → Rn be a differentiable function with continuous partial
derivatives and x0 ∈ U.
Assume that the linear transformation dFx0 is bijective, or, equivalently, that
the Jacobian matrix Jac f(x0) is an invertible matrix.
Then, there are open neighbourhoods U1 ⊂ U and U2 of x0 and F(x0) respec-
tively such that the restriction of F:

F|U1 : U1 → U2

is invertible (e.g bijective), and the inverse map F−1 : U2 → U1 is differentiable
with continuous derivatives.

The contents of the theorem is summarised schematically in Figure 12.

Remark 1.26. The theorem holds if F is a function defined on an open set of a Banach
space, into another Banach space.
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Figure 12: Under the hypotheses of the inverse function theorem. One can invert
the function F between open neighbourhoods U1 of x0 and U2 of F(x0) respectively.
However, the function may fail to be invertible globally: here x1 is mapped to F(x0)
too but it is not in U1.

A differentiable function with continuous partial derivatives is said to be of
class C1; we speak of C1 functions.

We unfortunately do not have the tools to prove this theorem; the proof relies on
the completeness of Rn (every Cauchy sequence converges), and a fixed point type
argument. ← End Lecture 9

Remark 1.27. (not mentioned in class, for your information) The local inverse func-
tion theorem above can be used to prove a global inverse function theorem:

Theorem 1.14: Global inverse function theorem

Let F : U ⊂ Rn → F(U) ⊂ Rm be an injective (one-to-one) C1 function, such
that dFx0 is invertible at each point x0 ∈ U, then:

• F(U) is open,
• F : U→ F(U) is invertible and the inverse function F−1 is a C1 function.

Proof. We begin by proving that F(U) is open. Let y0 = f(x0), then since dFx0 is
invertible we can apply the inverse function theorem and find open neighbourhoods
U1 and U2 of x0 and f(x0) respectively such that F|U1 : U1 → U2 is invertible and
in particular it is surjective (onto) so the open set U2 is completely contained F(U).
This shows that F(U) is open.

Now, the second statement is quite straightforward to establish: since F : U→ F(U)

63



is bijective, F−1 exists and is unique, hence the local inverses must coincide with
restrictions of F−1, differentiability is a local property, hence, F−1 is a C1 function.

1.9.2 A special case of the implicit function theorem ← Start Lecture 10

The inverse function theorem is of great theoretical importance, and has numerous
applications throughout mathematics. It is in fact equivalent to another theorem,
of equal importance, known as the implicit function theorem. Let us first study
the linear version, consider now the case of a linear system of m equations with n
unknowns and assume n > m; so we have more unknowns than equations. We can
again phrase this as an equation F(x) = c where F is a linear map Rn → Rm, which
can again be represented by a matrix A = (aij):

F(x) = c⇔ Ax = c ⇔


a11x1 + · · ·+ a1nxn = c1,
a21x1 + · · ·+ a2nxn = c2,
...
am1x1 + · · ·+ amnxn = cm.

In this case, if the matrixA is of full rank, then one can show thatm of the unknowns
can be expressed in terms of the n−m others.

Let us consider an explicit example where m = 1, n = 3 and consider an equa-
tion:

αx+ βy+ γz = c,

then the full rank condition simply means in this case that (α,β,γ) ̸= (0, 0, 0). As-
sume that γ ̸= 0, then:

z =
c

γ
−
α

γ
x−

β

γ
y.

This principle generalises, locally, to the case where F is a C1 function. The general
theorem requires some notation to make it readable, so we will first state a compact
version, in the special case where n = 3,m = 1 which is of use in applications.
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Theorem 1.15: The implicit function theorem when n = 3,m = 1

Let F : U ⊂ R3 → R be a C1 function, and c ∈ R3. Let (x0,y0, z0) ∈ U be such
that F(x0,y0, z0) = c and assume that:

∂F

∂z
(x0,y0, z0) ̸= 0,

then there is an open neighbourhood U1 of (x0,y0, z0), an open neighbourhood
U2 of (x0,y0) ∈ R2 and a C1 function φ : U2 → R such that we have the
following equivalence:{

(x,y, z) ∈ U1,
F(x,y, z) = c,

⇔

{
z = φ(x,y),
(x,y) ∈ U2.

Furthermore, for (x,y) ∈ V2:

∂φ

∂x
(x,y) = −

∂F
∂x(x,y,φ(x,y))
∂F
∂z (x,y,φ(x,y))

, ∂φ

∂y
(x,y) = −

∂F
∂y(x,y,φ(x,y))
∂F
∂z (x,y,φ(x,y))

.

Remark 1.28. It is not actually important that it be the z-variable, it can be any of
the three, which will then be expressed as a function of the other two.

The implicit function tells us that, locally, the set of solutions to the equation:
F(x,y, z) = c is given by a graph !

Proof. The idea of the proof is to complete the system by adding some extra trivial
equations and apply the inverse function theorem. We introduce:

G : U ⊂ R3 −→ R2 × R = R3

(x,y, z) 7−→ (x,y, F(x,y, z)) .

This amounts to replacing the unique equation F(x,y, z) = c by the system:
x = x,
y = y,
F(x,y, z) = c.

Since F is differentiable, G is differentiable by composition of differentiable maps.
Let us compute the Jacobian matrix of G at (x0,y0, z0)

Jac G(x0,y0, z0) =

 1 0 0
0 1 0

∂F
∂x(x0,y0, z0)

∂F
∂y(x0,y0, z0)

∂F
∂z (x0,y0, z0)

 .
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Since det(Jac G(x0,y0, z0)) = ∂F
∂z (x0,y0, z0) ̸= 0, the inverse function theorem ap-

plies. There is therefore some open neighbourhood U1 of (x0,y0, z0) and an open
neighbourhood U2 × I ⊂ R2 × R, (U2 is open in R2 and I is an open interval, overall
this is an open set in R3) such that, restricted to U1, G is invertible with C1 inverse.
Let H denote this inverse function. H is necessarily of the form:

H(x,y, z) = (x,y, φ̃(x,y, z)).

Set φ(x,y) = φ̃(x,y, c), (x,y) ∈ U2, then ϕ is differentiable and for any (x,y) ∈ U2:

(x,y, c) = G(H(x,y, c)) = (x,y, F(x,y,φ(x,y))),

which proves that F(x,y,φ(x,y)) = c. This shows that if z = φ(x,y), (x,y) ∈ U2 then
F(x,y,φ(x,y)) = c as claimed.

Conversely, if we assume that (x,y, z) ∈ U1, and F(x,y, z) = c then G(x,y, z) =
(x,y, c) ∈ U2 × I but then: H(G(x,y, z)) = H(x,y, c) = (x,y,φ(x,y)) so that z =
φ(x,y).

This proves that we have found all solutions to the problem locally as claimed. It
remains to check the formula for the partial derivatives, but this follows from the
chain rule. For instance, we can consider the composition:

(x,y) ∈ U2
g7→ (x,y,φ(x,y)) F7→ F(x,y,φ(x,y)) = c

The result of this composition is a constant scalar function so its partial derivatives
vanish, by the chain rule we then have:

(0, 0) =
(
∂F
∂x(x,y,φ(x,y)) ∂F

∂y(x,y,φ(x,y)) ∂F
∂z (x,y,φ(x,y))

) 1 0
0 1

∂φ
∂x (x,y)

∂φ
∂y (x,y)

 .

From which the conclusion follows by carrying out the computation.

Example 1.19. Let’s work the theorem out on a standard example. Consider the
equation:

x2 + y2 = 1

in R2, it is well know that the solutions are the points of the unit circle.
y

x
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The circle cannot globally be the graph {y = f(x)} for some function f, as we can see
each x would have to be mapped simultaneously to two different values. Neverthe-
less, if we restrict to the (open) band, {(x,y) ∈ R2,−1 < x < 1,y > 0}, which is an
open neighbourhood of the point (0, 1) then clearly the solutions are given by:

y =
√

1 − x2.

Now, if set F(x,y) = x2 + y2, then it is clear that ∂F
∂y(0, 1) = 2 ̸= 0, so indeed, the

implicit function theorem says that we can express y as a function of x in some
neighbourhood of (0, 1).

Suppose now that we had considered the point (1, 0), in this case ∂F
∂y(1, 0) = 0 so

the implicit function theorem does not apply. Instead however, ∂F
∂x(1, 0) = 2 ̸= 0

which means that in a neighbourhood of (0, 1) we can express x as a function of y.
Explicitly we see that we will write:

x =
√

1 − y2.

⋄

1.9.3 Example of how the the implicit function theorem can be used in
natural sciences.

Unlike in the previous example, in general, we cannot write down the function φ.
However, this is not a problem as we can calculate its derivatives from F; the theorem
is generally used in this way.

To illustrate this further we shall consider a situation frequently encountered in
applications.

Often, it can be that a system is described by variables x,y, z, which are not inde-
pendent, i.e. there is some relation:

F(x,y, z) = 0,

between them where F : R3 → R. Assuming for instance that none of the partial
derivatives vanish at some point (x0,y0, z0) ∈ R3 in the parameter space of the sys-
tem (so F(x0,y0, z0) = 0), then according to the implicit function theorem we can use
locally around (x0,y0, z0) any two of the variables to express the other. Instead of
writing φ however we tend to abuse notation and write things like:

z(x,y), x(y, z), y(x, z).

To help keep track of things it also common to introduce for instance, notation:(
∂z

∂x

)
y

.
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To indicate that this is the partial derivative of z, viewed as a function of x and y,
in the x direction at fixed y. For instance, in a thermodynamics textbook you might
see things like: (

∂P

∂T

)
V

,

which would mean the partial derivative with respect to T of the pressure P viewed
as a function of T and V.

When working this always assume that (x,y, z) satisfies the equation F(x,y, z) so
that if we want to calculate the partial derivative, say, we can write:(

∂z

∂x

)
y

(x,y) = −
∂F
∂x(x,y, z)
∂F
∂z (x,y, z)

.

This is consistent, because, according to the theorem, z = φ(x,y) when F(x,y, z) =
0.

If we compute in a similar fashion
(

∂x
∂y

)
z

and
(
∂y
∂z

)
x

then the implicit function the-
orem shows that: (

∂z

∂x

)
y

(
∂x

∂y

)
z

(
∂y

∂z

)
x

= −1,

Which is an identity you will also find in thermodynamics or chemistry textbooks.

1.9.4 The general implicit function theorem

For this we will use the more general notion of partial derivative discussed in Sec-
tion 1.5.3. If you do not want to read this you should skip ahead to the theorem
statement at the end of the section.

We can state the general implicit function theorem as follows:
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Theorem 1.16: Implicit function theorem

Let (E1, ∥·∥E1
), (E2, ∥·∥E2

), (V, ∥·∥V) be Banach spaces, F : U ⊂ E1 ×E2 → V a C1

map. Let (a1,a2) ∈ E1 ×E2 and assume that the partial derivative: ∂F
∂y(a1,a2)

is an invertible linear map.a
Then there are open neighbourhoods U1 of (a1,a2) ∈ E1 × E2, U2 of a1 ∈ E1,
U3 of F(a1,a2) ∈ V, and a C1 map φ̃ : U2 ×U3 → E2 such that for all c ∈ U3:{

(x,y) ∈ U1,
F(x,y) = c,

⇔

{
y = φ̃(x, c),
x ∈ U2.

Furthermore, for fixed c ∈ U3, if we define φ(x) = φ̃(x, c) then:

dφx = −

[
∂F

∂y
(x,φ(x,y))

]−1
◦ ∂F
∂x

(x,φ(x,y)).

aI should say with continuous inverse but this is in fact automatic for Banach spaces.

Remark 1.29. Observe that on the last line, this is an equation on linear maps.

The proof follows the same idea as in the case we studied before, so we will not
reproduce it here, but will instead explicitly translate this into a compact version in
finite dimensions.

Let us start with a function F : U ⊂ Rn = Rm−n × Rm → Rm. We should think of
this as reorganising the n-real variables (X1, . . . ,Xn) into two groups: x1, . . . , xm−n,
y1, . . . ,ym, which we consider as vector-valued variables:

x = (x1, . . . , xm−n), y = (y1, . . . ,ym).

This should be done in such a way that:

∂F

∂y
(x0,y0) ∈ L(Rm,Rm),

is invertible at some point (x0,y0) ∈ Rn−m × Rm where F(x0,y0) = c ∈ Rm. This
partial derivative is a linear map and can be represented by a square matrix of size
m×m, writing: F(x,y) = (F1(x,y), . . . , Fm(x,y)) it is given at (x0,y0) ∈ Rm−n×Rm =
Rn by: 

∂F1
∂y1

(x0,y0) · · · ∂F1
∂ym

(x0,y0)
... . . . ...

∂F1
∂ym

(x0,y0) · · · ∂Fm

∂ym
(x0,y0).


This is a square submatrix of the full Jacobian of F; the assumption of the theorem is
therefore that this matrix is invertible i.e. its determinant is non-vanishing.
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The theorem then says that we can find a C1 function φ : U2 → Rm, defined on
some open neighbourhood U2 of x0, such that in a neighbourhood U1 of (x0,y0) all
the solutions of the equation F(x,y) = c are given by:

y = φ(x).

Translating the final equation in terms of Jacobian matrices we therefore have at
any solution point (x,y) (i.e. F(x,y) = c which means y = φ(x)):

Jac φ(x) = −


∂F1
∂y1

(x,y) · · · ∂F1
∂ym

(x,y)
... . . . ...

∂F1
∂ym

(x,y) · · · ∂Fm

∂ym
(x,y).


−1

∂F1
∂x1

(x,y) · · · ∂F1
∂xn−m

(x,y)
... . . . ...

∂Fm

∂x1
(x,y) · · · ∂Fm

∂xn−m
(x,y)

 .

This is summarised in the next theorem: .Mandatory
reading
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Theorem 1.17: Implicit function theorem, several equations

Let F : U ⊂ Rn−m × Rm → Rm be a C1 function, assume that:

F(⃗x, y⃗) = (F1(⃗x, y⃗), . . . , Fm(⃗x, y⃗)),

let (⃗x0, y⃗0) ∈ U and suppose that:

F(⃗x0, y⃗0) = c ∈ Rm.

Write:

[
∂F

∂y⃗
(⃗x0, y⃗0)

]
=


∂F1
∂y1

(⃗x0, y⃗0) · · · ∂F1
∂ym

(⃗x0, y⃗0)
... . . . ...

∂F1
∂ym

(⃗x0, y⃗0) · · · ∂Fm

∂ym
(⃗x0, y⃗0),


the partial Jacobian matrix with respect to y⃗ (i.e. the last m variables).
Then assuming that this matrix is invertible, there is an open neighbourhood
U1 of (⃗x, y⃗), an open neighbourhood U2 of x⃗ and a C1 function φ : U2 → Rm

such that: {
(⃗x, y⃗) ∈ U1,
F(⃗x, y⃗) = c,

⇔

{
y⃗ = φ(⃗x),
x⃗ ∈ U2.

Furthermore at each point (⃗x, y⃗ = φ(⃗x))

Jacφ(⃗x) = −


∂F1
∂y1

(⃗x, y⃗) · · · ∂F1
∂ym

(⃗x, y⃗)
... . . . ...

∂F1
∂ym

(⃗x, y⃗) · · · ∂Fm

∂ym
(⃗x, y⃗).


−1

∂F1
∂x1

(⃗x, y⃗) · · · ∂F1
∂xn−m

(⃗x, y⃗)
... . . . ...

∂Fm

∂x1
(⃗x, y⃗) · · · ∂Fm

∂xn−m
(⃗x, y⃗)

 .

Example 1.20. Let: F : R3 → R2 be defined by:

F(x,y, z) = (x2 + y2, 2x+ y− z)

let c = (1, 3) then:

F(x,y, z) = c⇔
{
x2 + y2 = 1
2x+ y− z = 4

which describes the intersection of a cylinder with a plane in R3.

Observe that, if the implicit function theorem can be applied then we will be able to
express two of the variables in function of 3 − 2 = 1 of the others: hence we recover
the fact that if non-empty, it is a curve. Now, (0, 1,−3) belongs to the solutions set.
Let us group together (y, z) into a vector valued variable y⃗ and determine the partial
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Jacobian matrix: [
∂F

∂y⃗

]
(0, 1,−3) =

(
2 0
1 −1

)
,

which is invertible, therefore, locally (y, z) = ϕ(x)(
dy
dx (0)
dz
dx(0)

)
= −

(1
2 0
1
2 −1

)(
0
2

)
=

(
0
2

)
.

In this case we can solve the equations explicitly near the point (0, 1,−3) and recover
the result:

z = 2x+ y− 3, y =
√

1 − x2.

⋄

1.9.5 Application of the implicit function theorem to the geometry of level
hypersurfaces

We can also use the implicit function theorem to finish the proof of the fact that if
L = {x ∈ Rn, F(x) = 0 } where F is a C1 function, then:

Tx0L = {h ∈ Rn, ⟨−→∇f(x0),h⟩ = 0},

when x0 is a regular point. We have already shown that:

Tx0L ⊂ {h ∈ Rn, ⟨−→∇f(x0),h⟩ = 0}.

It remains to establish the other inclusion: this will also prove (for free) that Tx0L
is a vector space !

12

i
-

-

-

Figure 13: Constructing a basis adapted to the problem
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The idea is to work in an orthonormal basis B ′ = (e ′1, . . . , e ′n) of Rn in which the last
vector is e ′n =

−→
∇f(x0)∥∥∥−→∇f(x0)

∥∥∥ ̸= 0; this is always possible (see Figure 13). If we write the

coordinates of a vector x in this basis (x ′1, . . . , x ′n), then:

∂F

∂x ′n
(x0) = ⟨

−→
∇F(x0), e ′n⟩ =

∥∥∥−→∇F(x0)
∥∥∥ ̸= 0.

It follows that, locally near x0, the level set is defined by the equation:

x ′n = φ(x ′1, . . . , x ′n−1).

Now if h is orthogonal to the gradient vector at x0 then, h = h1e
′
1 + . . .hn−1e

′
n−1

and, assuming the coordinates of x0 are given by (a ′1, . . . ,a ′n) in the basis B ′ we can
define, for small enough t, the curve:

γ(t) =

n−1∑
i=1

(a ′i + th
′
i)︸ ︷︷ ︸

x ′i(t)

e ′i +φ(a
′
1 + th

′
1, . . . ,a ′n−1 + th

′
n−1)︸ ︷︷ ︸

x ′n(t)

e ′n.

By construction, it is drawn on L (indeed the coordinate satisfy the equation: x ′n(t) =
φ(x ′1, . . . , x ′n−1) for all t) and the tangent vector at t = 0 is given by:

γ ′(0) =
n−1∑
i=1

h ′ie
′
i −

1∥∥∥−→∇f(x0)
∥∥∥

n−1∑
i=1

∂F

∂x ′i
(x0)h

′
ie
′
n

but ∂F
∂x ′i

(x0) = ⟨
−→
∇F(x0), e ′i⟩ = 0 for 1 ⩽ i ⩽ n− 1, by definition, hence:

γ ′(0) = h.

Remark 1.30. Recall that the partial derivatives are defined to be the directional
derivatives in the direction of the basis vectors:

∂F

∂x ′i
(x0) = De ′i

F(x0),

and when F is differentiable this is linked to the derivative by:

dFx0(e
′
i) = De ′i

F(x0).

Finally when F is a scalar field the gradient is defined by the property:

dfx0(h) = ⟨
−→
F (x0),h⟩.

← End Lecture 10

73



1.10 Applications to the search for extrema ← Start Lecture 11

From 1-variable calculus, you know that the derivative can help us find the maxi-
mum and minimum values of numerical functions f : R → R. The basic criterion is
that these values are reached at critical points where the derivative vanishes. How-
ever, as the function x 7→ x3 shows, not all critical points correspond to extrema.
Furthermore, the techniques of differential calculus are intrinsically local, so it will
only be able to detect x where local extrema are reached.

1.10.1 The first derivative test

Let us first generalise this criterion to scalar fields on a normed vector space:

Theorem 1.18: First derivative criterion

Let f : U ⊂ E→ R be a real-valued differentiable function, and x0 ∈ U, then if
f reaches a local extremum at x0 then −→

∇f(x0) = 0.

Proof. Let h ∈ E and let I = (−ε, ε) where ϵ is small enough such that x0+th ∈ U for
all |t| < ε. Then, the function φ : t 7→ f(x0 + th) reaches a local extremum at t = 0,
and by definition of the directional derivative:

φ ′(0) = ⟨
−→
∇f(x0),h⟩.

Therefore, by the usual 1-dimensional criterion, 0 = ϕ ′(0) = ⟨
−→
∇f(x0),h⟩ = 0 for any

h ∈ E, hence: −→
∇f(x0) = 0.

Example 1.21. The Mexican hat potential:

H(x,y) = −3(x2 + y2) + (x2 + y2)2,

has a local maximum at (0, 0).
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The gradient is given at any point (x,y) by:

−→
∇f(x,y) =

(
−6x+ 4x(x2 + y2)
−6y+ 4y(x2 + y2)

)
,

and it is indeed true that: −→
∇f(0, 0) = 0.

However, it is not a global maximum as H(x,y) → +∞ when ∥(x,y)∥ → ∞. ⋄

1.10.2 First derivative test on a constraint: Lagrange multipliers

The above criterion gives us a method for searching for local extrema on an open
set. However, we are quite often more interested in local extrema on sets defined by
certain constraints. These constraints can be written as a set of equations like those
we studied in the previous section.

For instance, they might be expressed in the form F(x) = 0 and F : U ⊂ Rn →
Rm:

F(x) = 0 ⇔


F1(x) = 0

...
Fm(x) = 0.

If F is a C1 function we have now developed a number of tools and concepts to help
us deal with this.

Let us first consider the casem = 1, i.e. there is only one constraint. In this case, the
constraint corresponds to a level set L of a scalar function, and we defined the tan-
gent vector space Tx0L to be, intuitively, the set of directions in which we can make
an infinitesimal displacement from x0 without leaving L ; this was characterised as
the set of vectors that are orthogonal to gradient vector −→

∇F(x0). Carrying out the
same reasoning as before, we see that if a differentiable function f : U ⊂ Rn → R
attains an extrema, subject to the constraint defined by L , at some point x0 ∈ L
then:

∀h ∈ Tx0L , ⟨−→∇f(x0),h⟩ = 0.

We shall call such a point x0 a critical point of f|L (the restriction of f to L .

Contrary to when we were seeking to optimise the function f on the open set this
does not imply that −→∇f(x0) = 0! Instead, it just states that it must be orthogonal to
all vectors in the vector tangent space, and therefore parallel to the gradient of F, in
other words:

∃λ ∈ R,−→∇f(x0) = λ
−→
∇F(x0).

Such a number is known as a Lagrange multiplier.

To illustrate the method in this case, let’s consider the following example:
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Example 1.22. Let us seek the extrema of f(x,y) =
√
x2 + y2 subject to the con-

straint x2 + 3y2 = 1, i.e. (x,y) lies on an ellipse represented in Figure 14. The

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

Figure 14: Ellipse : x2 + 3y2 = 1

function f is just value of the radius r from the origin, and we can see that it has
its extrema on the coordinate axes. Let us check explicitly that the theory recov-
ers this. Setting F(x,y) = x2 + 3y2 − 1 then the constraint is the level set L =
{(x,y) ∈ R2, F(x,y) = 0}. According to the above theory, we need to look for (x,y) ∈
R2 and λ ∈ R that solves the system:

x2 + 3y2 = 1
x√

x2+y2
= 2λx

y√
x2+y2

= 6λy

The first equation is just the constraint and the second and third express the condi-
tion: −→

∇f(x,y) = λ−→∇F(x,y).
Now, we can observe that if x ̸= 0 and y ̸= 0, then we can divide by x and y in the
last two equations and would find 2λ = 6λ⇒ λ = 0, which in turn implies x = y = 0
and so is inconsistent. The only solutions are then at points where either x = 0 or
y = 0.

It is straightforward to check that the only solutions are:

x = 0,y = ± 1√
3

, λ =
1

2
√

3
, or x = ±1,y = 0, λ =

1
2.

Which are precisely the intersections of the ellipse with the axes.

Observe that these are not critical points of f on its open domain, since λ ̸= 0. ⋄
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We will now see how to generalise this to problems with several constraints. We al-
ready have the general ideas, and the notion of tangent (vector) space extends:

Definition 1.18

Let F : U ⊂ Rn → Rm be a C1 function, c ∈ Rm and set:

L = {x ∈ Rn, F(x) = c}.

x0 ∈ U is said to be regular if dfx0 is surjective or, equivalently, Jac f(x0) has
full rank.
The tangent vector space to a regular point x0 ∈ L is defined to be the set of
tangent vectors at x0 to curves on L passing through x0. That is:

v ∈ Tx0L ⇔ ∃ γ : (−ε, ε) −→ L ⊂ Rn

t 7−→ γ(t)
,
{
γ(0) = x0,
γ ′(0) = v.

Now, as in the casem = 1, if γ is curve defined as in the above definition, then,differentiating
the identity:

F(γ(t)) = c,

using the chain rule, it follows that, at t = 0.

dFx0(γ
′(0)) = Jac F(x0)γ

′(0) = 0.

So:
Tx0L ⊂ { h ∈ Rn, Jac F(x0)h = 0}.

Remark 1.31. • If u : E→ F is a linear map, then the kernel or nullspace of u is:

keru = {x ∈ E,u(x) = 0}.

• By extension, A is a matrix then the set of column vectors X ∈ Rn such that
AX = 0 is referred to as the kernel or the nullspace of A.

Adapting the argument in Section 1.9.5, one can show that this is in fact an equal-
ity:
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Proposition 1.7

Let F : U ⊂ Rn → Rm be a C1 function, c ∈ Rm and set:

L = {x ∈ Rn, F(x) = c}.

Let x0 ∈ L be a regular point of F then:

Tx0L = { h ∈ Rn, Jac F(x0)h = 0}.

Writing: F(x) = (F1(x), . . . , Fm(x)), x ∈ U we can observe that:

Jac F(x0)h =


∂F1
∂x1

(x0)
∂F1
∂x2

(x0) . . . ∂F1
∂xn

(x0)

∂F2
∂x1

(x0)
. . . . . . ...

... . . . . . . ...
∂Fm

∂x1
(x0) . . . . . . ∂Fm

∂xn
(x0)



h1
...
...
hn

 ,

vanishes if and only if the product of h with each of the rows of the matrice van-
ishes. However, the rows are exactly the Jacobian matrices of the scalar fields
F1, . . . , Fm. Observe that the full rank condition implies that these rows are lin-
early independent. Hence, recalling that for the scalar fields Fi we have the string
of identities:

dFix0(h) = Jac Fi(x0)h = ⟨−→∇Fi,h⟩,
then:

h ∈ Tx0L ⇔ ∀i ∈ {1, . . . ,m}, ⟨
−→
∇Fi(x0),h⟩ = 0.

Now if f attains a local extrema at x0 on the constraint L , i.e. f|L admits a local
extrema there, then we will conclude that:

∀h ∈ Tx0L ,dfx0(h) = ⟨
−→
∇f(x0),h⟩ = 0.

As before, this does not imply that: −→
∇f(x0) = 0 ! Instead it must be in the orthog-

onal subset to Tx0L , which as we have seen above is spanned (generated) by the
vectors: −→∇Fi(x0), i ∈ {1, . . . ,m}.
Hence, we conclude that:

A regular point x0 of F is a critical point of f|L if and only if:

−→
∇f(x0) =

m∑
i=1

λi
−→
∇Fi(x0).

The numbers λi are again called Lagrange multipliers. ← End Lecture 11
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.Mandatory
readingExample 1.23. Consider the constraint L defined by the equations:{

xy3 + 2z2 − yx = 1,
x+ z = −1,

then one can check that every point of L is a regular point of the C1 function:

F(x,y, z) = (xy3 + 2z2 − yx, x+ z).

Now set f(x,y, z) = x, so that:

−→
∇f(x,y, z) =

1
0
0

 ,

and writing F1(x,y, z) = xy3 + 2z2 − yx, F2(x,y, z) = x+ z then:

−→
∇F1(x,y, z) =

 y(y2 − 1)
x(3y2 − 1)

4z

 , −→
∇F2(x,y, z) =

1
0
1

 .

Hence (x,y, z) ∈ L is a critical point for f|L if and only if there are reals λ1, λ2, such
that: 

xy3 + 2z2 − yx = 1,
x+ z = −1,
λ1y(y

2 − 1) + λ2 = 1
λ1x(3y2 − 1) = 0
4λ1z+ λ2 = 0.

Observe that, necessarily: λ1 ̸= 0 and x ̸= 0. So it follows immediately that:

y = ± 1√
3

, ∓2
√

3
9 λ1 + λ2 = 1

and consequently we can parametrise λ2, x, z in terms of λ1:
λ2 = 1 ± 2

√
3

9 λ1

z = − 1
4λ1

∓
√

3
18

x = 1
4λ1

±
√

3
18 − 1

after some tedious computation we find that:

λ2
1 =

27
4(55 ∓ 12

√
3)

.

Showing that f|L has 4 critical points. ⋄
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1.10.3 Higher order derivatives ← Start Lecture 12

The first derivative test is not the only means we have to detect values where ex-
trema are attained. In 1-dimensional calculus, we also have a test with the second
derivative, but what is the second derivative?

Let f : U ⊂ E → F be a differentiable function, then its differential at x0 ∈ U, dfx0
is an element of the vector space of all continuous linear maps between E and F:
L(E, F). This is a normed space, with norm given by:

∥u∥L(E,F) = sup
x∈E
x ̸=0

∥u(x)∥F
∥x∥E

.

Before proceeding lets consider this in two special cases, first, if E = Rn, F = Rm,
then, as we have discussed, any linear map may be represented in matrix form as a
map:

X 7→ AX,
where A is a m × n matrix, and we identify Rn with column vectors. In this case,
one might observe that:

∥u∥L(Rn,Rm) = sup
x∈Rn

x ̸=0

∥u(x)∥Rm

∥x∥Rn

= sup
X∈Rn

X ̸=0

∥AX∥Rm

∥X∥Rn

= ∥A∥Mm,n(R).

There is another special case, when E is a Euclidean space and F = R; that is when
u is in the dual space. Then the Cauchy-Schwartz inequality shows that:

u(h) = ⟨v,h⟩,h ∈ E,⇒ ∥u∥E ′ = ∥v∥E.

In particular, we have for differentiable scalar fields f : U ⊂ E→ R:

∥dfx∥E ′ =
∥∥∥−→∇f(x)∥∥∥

E

The differential of f therefore defines a map between the normed spaces:
df : U ⊂ E −→ L(E, F)

x 7−→ dfx
.

Definition 1.19

A function f : U ⊂ E → F is said to be two times differentiable at x0 if it is
differentiable (on an open neighbourhood of x0) and the differential df : U ⊂
E→ L(E, F) is differentiable at x0. In this case we write:

d2fx0 ∈ L(E,L(E, F)).
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This is starting to look awfully complicated: the second derivative is an object that
takes a vector h and assigns a linear map:

d2fx0(h) ∈ L(E, F).

The result is therefore an object that takes a vector k and assigns an element of
F:

(d2fx0(h))(k) ∈ F.

However, we can see that this final expression is linear in both the arguments h and
k and therefore be considered to be a continuous bilinear map E×E→ F. Hence, we
write instead:

d2fx0(k,h) ∈ F.

Example 1.24. • If f : E → F is linear, then d2fx0(k,h) = 0 at every point. In-
deed, the dfx = f for every x ∈ E.

• If B : E× E→ F is bilinear then: d2B = B.

⋄

We now restrict to the case E = Rn, F = Rn, in this case we can define:

Definition 1.20: Second order partial derivatives

Let f : U → Rn → Rm be a differentiable function, x0 ∈ U. Then we define
the second order partial derivatives to be the partial derivatives of the partial
derivatives:

∂2f

∂xi∂xj
(x0) =

∂

∂xi

(
∂f

∂xj

)
(x0),

when they exist.

As in the previous first order case, these determine completely the second order
differential d2fx0 at x0

Proposition 1.8

Let f : U ⊂ Rn → Rm be a twice differentiable function at x0, then,

d2fx0(ei, ej) =
∂2f

∂xi∂xj
(x0).

The reader may be concerned that there may be some ambiguity with the order of
differentiating in our notation, in fact, luckily for us, it does not matter at all:
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Proposition 1.9: Symmetry of partial derivatives

If f : U ⊂ Rn → Rm is twice differentiable at x0, then:

∂2f

∂xi∂xj
(x0) =

∂2f

∂xj∂xi
(x0),

in other words d2f is a symmetric bilinear map.

Remark 1.32. This symmetry of d2f is also true, and actually (in my opinon) less
fiddly to prove, when f : U ⊂ E → F. You can find the proof in André Avez’s book,
Calcul différentiel.

As before:

. A function may have second order partial derivatives and still not be twice
differentiable !

Once more, if the partial derivatives are continuous, then we recover second order
differentiablity.

Proposition 1.10

Let f : U ⊂ Rn → R, Suppose that the partial derivatives

x 7→ ∂2f

∂xi∂xj
(x)

exist and are continuous functions. Then f is twice differentiable on U.

Remark 1.33. Functions that satisfy the conditions of the above Proposition are
called C2 functions.

The theory can be repeated to any order of differentiability k ∈ N; with the same
theorems. If a function is differentiable to any order k ∈ N then we say that f is
smooth or C∞.

1.11 Scalar fields and the Hessian matrix (skipped)
As usual, the case of real-valued functions, i.e. scalar fields, is special. Indeed,
we saw that the derivative, which was already represented a matrix for all other
dimensions, could still be represented by a vector ∇⃗f. So we might hope that its
second derivative still admits a reasonable representation. This expectation is met:
it can be represented by a matrix, known as the Hessian matrix.
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Definition 1.21

Let f : U ⊂ Rn → R be a differentiable function, x0 ∈ U, then the Hessian
matrix of f is defined to be:

H f(x0) =

(
∂2f

∂xi∂xj
(x0)

)
(i,j)∈ {1,...,n}

.

When f is twice differentiable the matrix is symmetric.

Remark 1.34. When you will have done a bit more linear algebra, you will see that
when f is real valued, the second derivative is a symmetric bilinear form (analogous
to a scalar product) and the Hessian matrix is just the matrix of this bilinear form
when f is twice differentiable.

We still require one further fact in order to discuss extrema, the generalisation of
the Taylor formula:

Proposition 1.11: Second order Taylor formula for real-valued functions (ma-
trix form)

Let f : U ⊂ Rn → R be twice differentiable at x0, then:

f(x0 + h) = f(x0) + ⟨
−→
∇f(x0), h⟩+ th(H f(x0))h + ∥h∥2ε(h),

where lim
h→0

ε(h) = 0. Here: h =

 h1
...
hn

 ∈ Rn.
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1.11.1 The second derivative test (Skipped)

We will require the following fact from Linear algebra. Sorry.
A symmetric matrix is diagonalisable with real eigenvalues: there is an in-
vertiblea matrix P such that:

A = P


λ1 0 . . . 0
0 . . . . . . ...
... . . . . . . 0
0 . . . 0 λn

P−1

The numbers λ1, . . . , λn are the eigenvalues of A. These are numbers λ ∈ R,
such that there is a non-zero column vector X ∈ Rn such that:

AX = λX,

and are exactly the roots of its characterstic polynomial:

χA(X) = det(XI−A).

(I is the identity matrix). (This is known as the Cayley-Hamilton theorem.)
aactually it can be chosen to be orthogonal i.e. P−1 = tP

Example 1.25. Consider the symmetric matrix: 1 −1 −2
−1 0 0
−2 0 1


The characteristic polynomial is:∣∣∣∣∣∣

X− 1 1 2
1 X 0
2 0 X− 1

∣∣∣∣∣∣ = X3 − 2X2 − 4X+ 1.

One can check that the three roots are real, 2 are positive and 1 is negative. ⋄

If x0 is a criticial point, i.e. −→∇f(x0), then the Taylor formula shows that:

f(x0 + h) = f(x0) +
th(H f(x0))h + ∥h∥2ε(h),

when ∥h∥ is small so that we can neglect the size of the remainder time in front of
the first two, one can see that if f

th(H f(x0))h < 0,
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for all h, then f attains a local maximum at x0. Indeed, in this case moving in any
direction from x0 causes the value of the function to decrease. When this condition
is satisfied we say that the symmetric matrix H f(x0) is definite negative. In the
same way, it will attain a local minimum at x0 if

th(H f(x0))h > 0,

we say that: H f(x0) is definite positive. If neither conditions are satisfied we are
unable to conclude in general, although we say that a critical point x0 is of saddle-
type if it is neither definite positive or negative but the matrix H f(x0) is invertible.
In this case, x0 is a minimum in some directions, and a maximum in others, making
the function look like a saddle, which explains the terminology.

The whole criterion relies on the being able to determine whether or not the Hes-
sian matrix is H f(x0) is definite positive or negative. The eigenvalues enable us to
characterise this precisely:

Proposition 1.12

A symmetric matrix A is definite positive (resp. definite negative) if and only
if its eigenvalues are strictly positive (resp. strictly negative).

When n = 2, recover the standard second derivative test from Calc III. See [1,
Theorem 6, p.176].

Calculating the eigenvalues can sometimes be a nuisance. In fact in reality, more
than their actual values, we only need to know their sign. The appropriate notion
from linear algebra is the signature (p,q, r) of the symmetric matrix (p is the number
of positive eigenvalues, q the number of negative eigenvalues, r the dimension of the
kernel). The interested reader can investigate Sylvester’s law of inertia and Gauss’s
algorithm for quadratic forms. As an example, using Gauss’s algorithm, one can
easily show that the matrix in the previous example is neither positive definite nor
negative definite; in fact, its signature is (2, 1, 0).

85



2 Vector calculus in 3 dimensions
See also Sections 4.3 and 4.4 in Marsden and Tromba 6th edition

In this chapter, we return to the setting of a 3-dimensional oriented Euclidean space,
(E, ⟨·, ·⟩). From now on we will use the notation ⟨·, ·⟩, to denote its inner product.
These notions were defined and briefly studied in Chapter 0. As usual, you may
replace E = R3.

This mathematical apparatus is the modern way of modelling the dimensional world
described by classical Newtonian physics.

You may be wondering at this point why the sudden return from arbitrary finite
dimension n to the special case n = 3. In fact, a large part of what we will cover in
this chapter does not require us set n = 3 and has relatively straightforward gener-
alisations to n-dimensional Euclidean space. However, there is a low dimensional
“accident” that makes n = 3 slightly special; we have already encountered one of its
repercussions when we discussed the cross product. This accident was exploited3

historically as the theory was being developed, notably to talk of the curl of a vector
field, and has shaped the way things are treated in other sciences where n = 3 is
predominantly the most relevant case. In higher dimensions, there is a sense in
which vectors are the “wrong” objects, and we should instead be looking at the dual
space...

Nevertheless, it is worthwhile studying how n = 3 is treated for applications, if time
permits we will discuss how to make the jump back to arbitrary dimension n.

Before we begin, it is important now to fix our ideas about what we mean when we
talk about vector fields, which will be the main object we wish to study. Despite the
fact that we are modelling them using a function: X⃗ : U ⊂ E→ E, it should really be
thought of assigning to each point if space a vector (represented by an arrow). This
is represented visually for instance in Figure 15.

It might be useful for you to distinguish between the E on the left and on the right
conceptually. On the left E is modelling space: you can think of it as physical space4

E in which we have chosen an origin point O for a reference frame, but have not yet
defined axes (or if you take E = R3 it is the coordinate space R3 we have obtained
after setting up a reference frame: i.e. we have chosen an origin and orthogonal
axes).

The E on the right can instead be thought of the tangent space TpU to the open set
U at an arbitrary point in space. However, recall that, intuitively, the tangent space
is the set of tangent vectors to curves that live in U, but, here this would just be all

3probably unwittingly
4In classical physics, physical space is modelled by an affine space, which can be thought of as a

vector space in which we have forgotten the origin. Once we have chosen an origin, it can be identified
with a vector space.
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Figure 15: A vector field in space.

of E (by definition of open sets), so TpU ≃ E for any p, so we can identify them all
with E. Hence for our purposes, there is no need to distinguish between the tangent
space and E.

Just like the example of the gradient vector field of a scalar field f, vector fields
are used to describe the local behaviour of some phenomenon near a point in space,
which supports the mental image we are constructing.

2.1 Integral curves of vector field
Now that we agree on what a vector field is, at least mathematically, we can be-
gin discussing some concepts associated with it that will help us to understand the
information it contains and, in applications, interpret what it means. The first of
these is that of the flow of a vector field.

To construct a mental image of this, suppose we are describing the motion of a body
of water, like a river. Now, instead of thinking of the river as an unthinkable num-
ber of H2O particles and describing the total motion of each of them individually,
instead, we might assimilate the river to a continuous volume, ignoring its actual
composition. Now, let us suppose that the river is flowing steadily, so that the move-
ment is the same at any time t. If we mentally imagine placing a test particle at
the point (x,y, z) in the river, and then letting it go: it will flow along the river,
describing some curve in the volume of water. (See Figure 16).

Let us denote by X⃗(x,y, z) the velocity vector of this curve at t = 0. In this way, we
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<
Test particle is carried away by the flow
tes of the river
>
-
-

Figure 16: A test particle placed in water at some point will describe a curve as it is
carried by the flow of the river.

obtain a vector field over the body of water. Describing at each point the velocity a
test particle will experience if we place it at a point (x,y, z).

Conversely, if a vector field X⃗ is given on some open set, we consider a curves, starting
at an arbitrary point p ∈ E, such that the tangent point to each curve is given by
X⃗. These are called the integral curves or flow lines of X⃗ and are defined by the
following differential equation: {

γ̇(t,p) = X⃗(t)
γ(0,p) = p.

The theory of ordinary differential equations (ODEs) guarantees that this can al-
ways be solved, and has a unique solution, for t in some small interval (−ε, ε). We
will not assume any knowledge of the theory of ODEs, and will only use this fact.
Let us consider an example:

Example 2.1. Let us consider the vector field in R2 given by:

X⃗(x,y) = (x,−y)

Then the integral curve of X⃗ through p = (x0,y0) is a curve γ(t,p) = (x(t),y(t)) such
that: 

dx
dt (t,p) = x(t,p)
dy
dt (t,p) = y(t,p)
x(0,p) = x0,y(0,p) = y0.

Here, we can solve everything explicitly and find x(t,p) = x0e
t,y(t,p) = y0e

−t.
Ignoring the dynamics, we can eliminate the parameter t and see that these are the
curves described implicitly by the equation:

xy = x0y0.

⋄
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If the vector field X⃗ : U ⊂ E→ E is C1, then one can show that there is an open subset
D ⊂ R ×M with the property that for each p ∈ E, D(p) = {t ∈ R, (t,p) ∈ D} is an
open interval containing 0, and such that the function:

γ : D −→ E

(t,p) 7−→ γ(t,p)

is also C1, this function is often denoted by:
(t,p) 7→ ϕX

t (p)

and is called the flow of the vector field, it has many useful properties but we will
not study them here.

2.2 An algebraic property of volume
Integral curves will be useful to understand how a vector field might act on vol-
ume: perhaps it is describing a compressing motion, or a dilating motion: this
will be captured by the notion of divergence, which we will derive from the integral
curves.

To introduce this concept, recall that the mixed product of three vectors u⃗, v⃗, w⃗ is in-
terpreted as the volume of the parallelepiped they support. In particular, the mixed
product of the vectors of a positive orthonormal basis (e⃗1, e⃗2, e⃗3) is 1: this paral-
lelepiped is of unit volume and is used as the reference for computing the volumes
of more complicated shapes.

Now, we found that the map: (u⃗, v⃗, w⃗) ∈ E 7→ [u⃗, v⃗, w⃗] ∈ R had two interesting
properties:

1. it was linear in each of its variables,

2. it is alternating, i.e. if any two of the vectors are the same then it is vanishing.

Let us denote by Vol(E) the set of functions ω : E → R with these properties then
this is naturally a vector space. Indeed, if ω1,ω2 ∈ Vol(M) then the operators are
defined by the following for any u⃗, v⃗, w⃗ ∈ E, λ ∈ R{

(ω1 +ω2)(u⃗, v⃗, w⃗) = ω1(u⃗, v⃗, w⃗) +ω1(u⃗, v⃗, w⃗)
(λω1)(u⃗, v⃗, w⃗) = λω(u⃗, v⃗, w⃗).

It turns out that it is of dimension 1, in other words, the mixed product is determined
by these properties up to a constant.

We can see this by counting the number of free parameters in an arbitrary ele-
ment ω ∈ Vol(M): if (e⃗1, e⃗2, e⃗3) is a positive orthonormal basis of E, then decom-
posing:

u⃗ =

3∑
i=1

uie⃗i, v⃗ =

3∑
i=1

vie⃗i, w⃗ =

3∑
i=1

wie⃗i,
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we can write:

ω(u⃗, v⃗, w⃗) = ω(

3∑
i=1

uie⃗i,
3∑

j=1
vje⃗j,

3∑
i=k

wke⃗k),

by linearity in the first variable =

3∑
i=1

uiω(e⃗i,
3∑

j=1
vje⃗j,

3∑
i=k

wke⃗k),

by linearity in the second variable =

3∑
i=1

3∑
j=1

uivjω(e⃗i, e⃗j,
3∑

i=k

wke⃗k),

by linearity in the third variable =

3∑
i=1

3∑
j=1

3∑
k=1

uivjwkω(e⃗i, e⃗j, e⃗k).

Since ω is assumed to be alternating, the sums vanish unless we have {i, j,k} =
{1, 2, 3}: i, j,kmust all be distinct and are therefore 1, 2, 3 in some order. We can rep-
resent an ordering of {1, 2, 3} as a one-to-one correspondence σ : {1, 2, 3} → {1, 2, 3}
of the set {1, 2, 3} with itself: these are known as permutations of {1, 2, 3}. One may
count that there are only 3! = 6 possible functions, which we represent in the fol-
lowing way:

σ =

(
1 2 3
σ(1) σ(2) σ(3)

)
.

The six possibilities are:(
1 2 3
1 2 3

)
,
(

1 2 3
1 3 2

)
,
(

1 2 3
3 1 2

)
,
(

1 2 3
3 2 1

)
,
(

1 2 3
2 3 1

)
,
(

2 3 1
1 3 2

)
Collecting these into a set written S3, we can rewrite our computation as:

ω(u⃗, v⃗, w⃗) =
∑

σ∈Sn

uσ(1)vσ(2)wσ(3)ω(e⃗σ(1), e⃗σ(2), e⃗σ(3)).

However, we also saw that if a function was alternating, then if we swap any two of
its variables then the function is only changed by a minus sign. For instance:

ω(e⃗1, e⃗2, e⃗3) = −ω(e⃗2, e⃗1, e⃗3).

Hence, we can rearrange the order of the arguments of ω so that it is always in
the order 1, 2, 3, however, the price of this ordering will be a sign ±1 which we will
call ε(σ) that depends on how many vectors we needed to swap. Overall we see
that:

ω(u⃗, v⃗, w⃗) = ω(e⃗1, e⃗2, e⃗3)
∑

σ∈Sn

ε(σ)uσ(1)vσ(2)wσ(3).
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The sum
∑

σ∈Sn

ε(σ)uσ(1)vσ(2)wσ(3) that has appeared here is known as the Leibniz

formula for determinants and is actually how determinants are defined. Hence, we
have shown that:

ω(u⃗, v⃗, w⃗) = ω(e⃗1, e⃗2, e⃗3)

∣∣∣∣∣∣
u1 v1 w1
u2 v2 w2
u3 v3 w3

∣∣∣∣∣∣ = ω(e⃗1, e⃗2, e⃗3)[u⃗, v⃗, w⃗].

If ever we stumble across a function ω with the same algebraic properties of
the triple product, then there is a constant λ ∈ R such that:

∀u⃗, v⃗, w⃗ ∈ E, ω(u⃗, v⃗, w⃗) = λ[u⃗, v⃗, w⃗]

2.3 Divergence of a vector field
2.3.1 Definition

We will now study how volume, i.e. the triple product is affected, infinitesimally, by
the flow of a vector field. Consider the following figure 17. The integral lines of some

-

=>a
-

Figure 17:

vector field X⃗ are represented in blue. Let us imagine that they represent the flow
of some body of water. Now, consider a fish travelling along some curve in the water
such that at the point p it has the velocity vector v⃗. We can transport this trajectory
by the flow of the water for a fixed amount of time t and will find a new curve (in
pink-red), which we can imagine would have been the trajectory of the fish had it
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been travelling a bit further downstream. By the chain rule, the velocity vector v⃗ ′
to this curve at the point ϕX

t (p) is exactly the directional derivative of the function
p 7→ ϕX

t (p) in the direction v⃗, or in terms of differentials:

v⃗ ′ = (dϕX
t )p(⃗v).

Assume now, that we do this for vectors u⃗, v⃗, w⃗. Then we can calculate the triple
product:

[(dϕX
t )p(u⃗), (dϕX

t )p(⃗v), (dϕX
t )p(w⃗)],

which will enable us to compare the (oriented) volume of an arbitrary parallelepiped
at p, with the volume of the transformed parallelepiped under the flow of the vector
field X⃗. The infinitesimal change at p will then be given by the derivative:

d

dt
[(dϕX

t )p(u⃗), (dϕX
t )p(⃗v), (dϕX

t )p(w⃗)]

∣∣∣∣
t=0

= lim
t→0

[(dϕX
t )p(u⃗), (dϕX

t )p(⃗v), (dϕX
t )p(w⃗)] − [u⃗, v⃗, w⃗]

t
.

Letting u⃗, v⃗, w⃗ be arbitrary, this limit can be viewed as defining the derivative of
a map defined an open interval I of R into the vector space Vol(E). The result is
consequently a new element of Vol(E) and there is a constant, that we write: div X⃗(p)
and call the divergence of X at p, such that for any u⃗, v⃗, w⃗:

d

dt
[(dϕX

t )p(u⃗), (dϕX
t )p(⃗v), (dϕX

t )p(w⃗)]

∣∣∣∣
t=0

= (div X⃗(p))[u⃗, v⃗, w⃗].

In practice:

Theorem 2.1: The formula for the divergence

Let (e⃗1, e⃗2, e⃗3) be a positive orthonormal basis, then decomposing the point

p =

n∑
i=1

xie⃗i, and the vector field X⃗(p) =
n∑

i=1
Xi(p)e⃗i. We have:

div X⃗(p) =
3∑

i=1

∂Xi

∂xi
(p).

Proof. The (sketch of the) proof is presented an exercise for the motivated student.
Without loss of generality you may take E = R3, it always reduces to this case upon
a choice orthonormal basis.

1. First consider the map A 7→ detA defined on Mn(R): this is a differentiable
map as it is a polynomial in the coefficients of the matrix. Show that the dif-
ferential of this map at the identity matrix I is given by:

ddetI(H) = tr(H), H ∈Mn(R)
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2. Justify that:

[(dϕX
t )p(u⃗), (dϕX

t )p(⃗v), (dϕX
t )p(w⃗)] = det(Jac ϕX

t )(p)[u⃗, v⃗, w⃗].

3. Using the chain rule and combining the above with the facts that: ϕX
0 (p) = p

and
d

dt

∂ϕX
t

∂xi
(p)

∣∣∣∣
t=0

=
∂

∂xi

d

dt
ϕX
t (p)

∣∣∣∣
t=0

= (∂iX⃗)(p)

conclude.

In view of the above formula it is common to introduce the del operator:

∇⃗ =

 ∂
∂x
∂
∂y
∂
∂z

 ,

and write the divergence as a dot/inner product:

div X⃗ = ∇⃗ · X⃗ = ⟨∇⃗, X⃗⟩.

This can be useful as long as we work in Cartesian coordinates.

2.3.2 Interpretation

By construction, the divergence is a local measure of the change of volume as we
let regions flow along the integral lines of the vector field X⃗. In particular, its sign
indicates whether the flow lines are approaching one another, i.e. there is compres-
sion, or if they are spreading out, indicating expansion. In particular, we have the
following interpretation of the sign of the divergence:

If a vector field X⃗ represents the velocity field of a fluid, then:
• The fluid is compressing if div X⃗ < 0,
• The fluid is expanding if div X⃗ > 0.

Example 2.2. Consider the (radial) vector field in the plane z = 0,

X⃗(x,y) = −xe⃗x − ye⃗y,

then its integral curves are represented as follows:
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3 2 1 0 1 2 3

3

2

1

0

1

2

3

They are converging towards the point 0, hence, if this was describing a fluid we
would imagine it to be compressing, and this intuition is supported by:

div X⃗ =
∂

∂x
(−x) +

∂

∂y
(−y) = −2 < 0.

⋄ ← End Lecture 12
← Start Lecture 13

2.3.3 Properties of the divergence

The following two properties can be derived from the definition:

1. If X⃗ and Y⃗ are two vectors fields, then:

div (X⃗+ Y⃗) = div X⃗+ div Y⃗.

2. If f is a scalar field, and X⃗ a vector field then:

div(fX⃗) = ⟨
−→
∇f, X⃗⟩+ fdiv X⃗.

The divergence of a gradient vector field of a C2-scalar field is a distinguished second
order differential operator, known as the Laplace operator:

∆f = div (
−→
∇f) = ∇⃗ · ∇⃗f = ∂2f

∂x2 +
∂2f

∂y2 +
∂2f

∂z2 .
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2.4 The curl of a vector field
The del notation:

div X⃗ =
−→
∇ · X⃗,

suggests that we can obtain another differential operator if we replace the dot prod-
uct by the cross product: −−→

curl X⃗ =
−→
∇ × X⃗.

This operator is known as the curl operator. Whilst this “definition” is ad hoc, quite
unsatisfactory and, unlike the divergence, does not immediately help us understand
what information it conveys about the behaviour of the vector field, it is a good start-
ing point for computation. It is also at this point where dimension 3 becomes im-
portant: the discussion about the divergence operator generalises immediately to
arbitrary dimensions, the definition of the curl operator will not as we have used
the cross product.

Starting from our definition we will find the following expression for the curl in
Cartesian coordinates associated with an orthonormal basis: (e⃗x, e⃗y, e⃗z), writing:

X⃗ = Xxe⃗x + Xye⃗y + Xze⃗z,

we have:

⃗curl X⃗ =

∣∣∣∣∣∣
∂
∂x Xx e⃗x
∂
∂y Xy e⃗y
∂
∂z Xz e⃗z

∣∣∣∣∣∣
= (

∂Xz

∂y
−
∂Xy

∂z
)e⃗x − (

∂Xz

∂x
−
∂Xx

∂z
)e⃗y + (

∂Xy

∂x
−
∂Xx

∂y
)e⃗z.

It is important to observe that whilst the divergence of a vector field is a scalar
field, the curl of a vector is another vector field.

Example 2.3. Consider:

X⃗(x,y, z) = 2xz2e⃗x + e⃗y + y3zxe⃗z,

then:
−→
∇ × X⃗ =

∣∣∣∣∣∣
∂
∂x 2xz2 e⃗x
∂
∂y 1 e⃗y
∂
∂z y3zx e⃗z

∣∣∣∣∣∣ = 3y2zxe⃗x − (y3z− 4xz)e⃗y.

⋄

Example 2.4. Let us consider the example of X⃗ =
−→
∇f for some C2-function, then we

can see that: −−→
curl (−→∇f) = 0.
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In particular, the curl can be seen to measure the default of a vector field from being
a gradient vector field. ⋄

The interpretation of the curl operator will be considered in more detail when we
study the integral theorems of vector calculus. It is somewhat related to a local
measure of how the integral curves curl around an axis locally, but this is not always
easy to visualise.

We borrow the following example 9 from [1, Example 9, p.250], to develop this idea
further on an example where it is particularly clear.

Example 2.5. Consider an arbitrary rigid object which is rotating around the e⃗z axis
in R3 with constant angular velocity ω. Defining the vector ω⃗ = ωe⃗z, then velocity
vector at any point M of the object is given by:

v⃗ = ω⃗×
−−→
OM,

where O is an arbitrary origin on the z axis. Let us consider the vector field on
the open set U defining the interior of the object, then, introducing an arbitrary
orthonormal basis and writing: −−→

OM = xe⃗x + ye⃗y + ze⃗z. We find that the velocity
vector field is then:

v⃗(x,y, z) = ω(xe⃗y − ye⃗x).
We compute: −−→

curl v⃗ = (
−→
∇ × v⃗)(x,y, z) = ω(e⃗z + e⃗z) = 2ω⃗.

The integral curves are contained in the planes z = cst. and if γ(t) = (x(t),y(t), z0)
then: {

x ′(t) = −ωy(t)

y ′(t) = ωx(t).

Defining ζ(t) = x(t) + iy(t) then we can see that this is equivalent to: ζ ′(t) = iωζ(t)
of which the solutions are:

ζ(t) = ζ0e
iωt = ζ0 cos(ωt) + iζ0 sin(ωt),

where ζ0 = x0 + iy0 and hence we see that:

x(t) = x0 cos(ωt) − y0 sin(ωt), y(t) = y0 cos(ωt) + x0 sin(ωt),

which are circles centred at the origin of the (x,y) plane.

However, it is important to note that the rotational is measuring something more
than just the shape of the curves as if we consider the vector field on R3 \{x = y = 0},

X⃗(x,y, z) = ye⃗x − xe⃗y
x2 + y2 ,
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then the integral curves are contained in planes of constant z defined by the equa-
tions: {

x ′(t) =
y(t)

x(t)2+y(t)2

y ′(t) = −
x(t)

x(t)2+y(t)2 .

However defining, r(t) =
√
x2(t) + y2(t) we see that:

r ′(t) =
1√

x2(t) + y2(t)
(x ′(t)x(t) + y ′(t)y(t)) =

1
r(t)3 (y(t)x(t) − x(t)y(t)) = 0.

So the integral curves of this vector field are also contained in circles, but:

∇⃗ × X⃗ = −
x2 − y2

(x2 + y2)2 e⃗z +
x2 − y2

(x2 + y2)2 e⃗z = 0.

⋄

We will try to motivate further the relevance of the curl at a later point. For now,
we remark that, similarly to the divergence, it has the following basic properties, if
X⃗ is a vector field and f a scalar field then:

1.
−−→
curl (X⃗+ Y⃗) =

−−→
curl X⃗+

−−→
curl Y⃗,

2.
−−→
curl (fX⃗) =

−−−→
grad f× X⃗+ f

−−→
curl X⃗.

In applications, in particular electromagnetism, the following second order identi-
ties are useful:

Proposition 2.1: Second order vector calculus identities

Let X⃗ be a C2 vector field, then:

1. div
−−−→
gradf = ∆f

2. div
−−→
curl X⃗ = 0

3.
−−→
curl

−−→
curl X⃗ =

−−−→
grad divX⃗− ∆X⃗.

4.
−−→
curl

−−−→
grad f = 0

In the above the Laplacian on vector fields is given, in Cartesian coordinates
by:

∆X⃗ = (∆Xx)e⃗x + (∆Xy)e⃗y + (∆Xz)e⃗z.

Remark 2.1. Using the double cross product formula 0.4 from the beginning of the
course, can you guess the third property?
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Example 2.6. Maxwell’s equation in vacuum are:

div E⃗ = 0
−−→
curlE⃗ = −∂B⃗

∂t ,
divB⃗ = 0,
−−→
curlB⃗ = µ0ε0︸︷︷︸

1
c2

∂E⃗
∂t .

It is custom to introduce a vector potential A⃗ such that B⃗ =
−−→
curl A⃗, and a scalar

potential ϕ such that: E⃗ =
−−−→
grad ϕ − ∂A⃗

∂t . In fact, the potentials A⃗ and ϕ always
exist (at least locally) but are not uniquely determined, this is an example of what is
known as a gauge theory. This so-called gauge freedom allows us to impose an extra
constraint:

div A⃗−
1
c2
∂ϕ

∂t
= 0,

defining what is known as the Lorenz gauge.

We can use the above identities to derive the second order equations satisfied by
these potentials: plugging the expression for B⃗ into the last equation we find that:

−−−→
grad divA⃗ = ∆A⃗−

1
c2
∂2A⃗

∂t2
+

1
c2

−−−→
grad ∂

∂t
ϕ.

Similarly, since div E⃗ = 0:
∆ϕ =

∂

∂t
div A⃗.

We therefore obtain the famous wave equation on both potentials:{
∆A⃗− 1

c2
∂2A⃗
∂t2 = 0,

∆ϕ− 1
c2

∂2ϕ
∂t = 0.

⋄

This is possibly one of the most important partial differential equations in math-
ematics. Understanding it has lead to the development of many techniques in the
their study. It is still studied in many different contexts today. ← End Lecture 13

2.5 Path and line integrals ← Start Lecture 14

Whilst we can immediately appreciate the geometric significance of the divergence,
our presentation of the curl operator is relatively obscure and unsatisfying: its in-
terpretation and relevance can only truly be appreciated in the context of Stoke’s
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theorem which, in its modern formulation, is a higher dimensional generalisation
of the fundamental theorem of calculus:∫b

a

f ′(t)dt = f(b) − f(a).

However, here, we do not want to integrate over an interval [a,b], but instead more
complicated geometric objects like curves and surfaces. For instance, we might want
to compute the work of a force acting on a point-like particle as it follows its trajec-
tory, or make sense of the flux of a field through a surface.

The mathematical question here is what objects can be integrated along curves and
surfaces. In this section, we begin with the case of curves.

It is useful to make a distinction between the notions of paths and geometric curves:
Recall that a path in 3-space is described by a function:

γ : [a,b] −→ R3.

However, the geometric curve C is the set of points reached by this function γ:

C = γ([a,b]) = {γ(t), t ∈ [a,b]},

and γ is just a means of describing this set. In particular, one can change the pa-
rameter t, for instance, by setting t = ϕ(s) for some bijective function [c,d] → [a,b]
and obtain a new parametrisation γ̃(s) = γ(ϕ(s)), which describes the same set of
points in space.

From a physical and mathematical perspective, the choice of parametrisation should
not matter in so much as we only care about the set of points. A choice of a specific
parameter is instead associated with questions of dynamics, i.e. how something is
moving along the curve. Hence, a good notion of integral along a curve should be
independent of any choice of parameter.

Let f : R3 → R be a scalar field, we could try to define an integral along the curve as
follows ∫b

a

f(γ(t))dt.

However, recall the change of variable formula for a 1D integral:∫ϕ−1(b)

ϕ−1(a)
f(ϕ(s))ϕ ′(s)ds =

∫b
a

f(t)dt,

So if we reparametrise the curve setting t = ϕ(s), we will have:∫b
a

f(γ(t))dt =
∫ϕ−1(b)

ϕ−1(a)
f(γ̃(s))ϕ ′(s)ds ̸=

∫ϕ−1(b)

ϕ−1(a)
f(γ̃(s))ds.
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This is therefore not a good notion for an integral...

The solution is to find a geometric object associated with a curve that transforms
under change of parametrisation like the change of variable formula, it turns out
that a differential form is such an object... Remember the linear maps dx, dy,dz
that popped up when we wrote:

df =
∂f

∂x
dx+

∂f

∂y
dy+

∂f

∂z
dz?

Recall that these are just the projection maps that act on vectors and give the com-
ponents in the directions e⃗x ,⃗ey and e⃗z respectively. They form a basis of the vector
space all linear functions L(R3,R) which we called the dual space of (R3) ′ and ob-
served that can be identified with the set of all row matrices.

Definition 2.1: Differential one forms

A differential one form on an open set U ⊂ R3 is a differentiable map, α : U→
(R3) ′: these are expressions of the form:

α(x,y,z) = α1(x,y, z)dx+ α2(x,y, z)dy+ α3(x,y, z)dz, (x,y, z) ∈ U

where αi : R3 → R (i ∈ {1, 2, 3}) are differentiable functions.

You have already encountered an important class of differential forms:

Example 2.7. Let f : U ⊂ R3 → R be a differentiable scalar field, then its differential
df is the differential one-form:

df(x,y,z) =
∂f

∂x
(x,y, z)dx+ ∂f

∂y
(x,y, z)dy+

∂f

∂z
(x,y, z)dz.

⋄

It turns out these are exactly the objects that can be integrated in a meaningful way
along a curve, as long as one has chosen an orientation of the curve. We will return
to this point later, first let us define:

Definition 2.2: Integral of a differential form along a path

Let γ : [a,b] → U ⊂ R3 be a (piecewise) C1 path and α a differential form on
U, then, writing: γ(t) = (x(t),y(t), z(t))∫
γ

α =

∫b
a

αγ(t)(γ
′(t))dt,

=

∫b
a

(
α1(x(t),y(t), z(t))x ′(t) + α2(x(t),y(t), z(t))y ′(t) + α3(x(t),y(t), z(t))z ′(t)

)
dt
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To understand the meaning of αγ(t)(γ
′(t)) we can think of α as assigning to each

point in space a measuring tool on vectors, and here, we are applying this along the
curve.

Using the chain rule, we find that this definition accomplishes (up to a subtlety) the
desired parametrisation independence:

Proposition 2.2: Parametrisation independence of the integral of differential
forms

Let γ : [a,b] → R3 be a path and ϕ : [c,d] → [a,b] an increasing bijective C1

map (with C1 inverse), then defining:

γ̃ = γ ◦ ϕ,

for any differential form α: ∫
γ̃

α =

∫
γ

α.

Proof. Performing the change of variable t = ϕ(s) in the integral:∫
γ

α =

∫b
a

αγ(t)(γ
′(t))dt =

∫d
c

αγ(ϕ(s))(γ
′(ϕ(s))ϕ ′(s))ds,

=

∫d
c

αγ̃(s)(γ̃
′(s))ds =

∫
γ̃

α,

For the first equation, recall that αγ(t) is a linear map, and the second equation
follows from the chain rule.

Example 2.8. Let α1 = ydx − xdy and γ : t ∈ [0, 2π] 7→ (cos(t), sin(t)) be a curve in
the plane z = 0, then:∫

γ

α1 =

∫2π

0
(sin(t)(− sin(t)) − cos(t) cos(t))dt = −2π.

⋄

Example 2.9. Let f be a scalar field and γ : [a,b] → R3 a closed curve, i.e. γ(a) =
γ(b) then:∫

γ

df =

∫b
a

dfγ(t)(γ
′(t))dt =

∫b
a

(f ◦ γ) ′(t)dt = f(γ(b)) − f(γ(a)) = 0.

⋄

Remark 2.2. It follows then that α1 from the example above is not df for some scalar
field f, this motivates the following notion.
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Definition 2.3: Exact differential forms

A differential form α = α1dx + α2dy + α3dy is said to be exact if there is a
scalar field f such that α = df.

← End Lecture 14

The subtlety in Proposition 2.2 is that we chose ϕ to be increasing, but what would
have happened if we had let ϕ : [c,d] → [a,b] be decreasing instead? In this case, we
would have: ϕ(d) = a and ϕ(c) = b and performing the change of variable t = ϕ(s)
in the integral:∫

γ

α =

∫b
a

αγ(t)(γ
′(t))dt =

∫c
d

αγ(ϕ(s))(γ
′(ϕ(s))ϕ ′(s))ds,

=

∫c
d

αγ̃(s)(γ̃
′(s))ds = −

∫
γ̃

α.

This means that the integral of a differential form is sensitive (up to a sign) to way we
walk along the curve; hence we should always integrate along oriented objects.

Using the above results we can define an integral over a certain class of geometric
curve C :

Definition 2.4

A geometric curve C is said to be regular C1 curve it admits a parametrisation
γ : [a,b] → C such that:

∀t ∈ [a,b],γ ′(t) = 0,

It is said to be simple if the parametrisation γ can be chosen to be injective
when restricted to the interval [a,b). (So the curve does not have any self
intersections).
A curve or path is said to be closed if γ(a) = γ(b).

At each point of a simple regular C1 curve, the direction of the tangent line is given
by γ ′(t) ̸= 0. Referring to our discussion about orientation at the beginning of the
course, we can orient each tangent line individually by choosing arbitrarily whether
γ ′(t) or −γ ′(t) is pointing in the positive direction. However, we would like the
orientation of the tangent lines to be consistent from point to point and therefore
impose that the positive direction move continuously with t. Here, since γ ′(t) is
assumed to be non-vanishing, once we have imposed the orientation at one point it
will be automatically determined at all the others. Intuitively, we can assimilate
this to deciding if we are walking along the curve from γ(a) to γ(b) or γ(b) to γ(a),
this is illustrated below:
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γ(a)

γ(b)

γ(a)

γ(b)

It therefore makes sense to talk about the integral along an oriented simple reg-
ular C1 geometric curve (or arc) C, the sign of this integral will be reversed if the
orientation is reversed. We set:

Definition 2.5

Let C be an oriented simple regular C1 curve then:∫
C

α =

∫
γ

α,

where γ : [a,b] → R3 is any parametrisation that maps [a,b) injectively into
C and such that γ ′(t) ̸= 0 is positively oriented at each point.
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Let us point out a subtlety that explains why we are suddenly concerned about
self intersections and the injectivity of the map γ on [a,b). Consider the two
parametrised curves:

γ1(t) = (cos(t), sin(t)), γ2(t) = (cos(2t), sin(2t)).

Now as t varies between 0 and 2π they describe the same set of points, with the
exception that γ2 goes around the circle twice. Let us consider the differential
form:

α = −
ydx

x2 + y2 +
xdy

x2 + y2

Now:
1

2π

∫
γ1

α =
1

2π

∫2π

0
(sin2(t) + cos2(t))dt = 1,

whereas:
1

2π

∫
γ1

α =
1

2π

∫2π

0
(2 sin2(t) + 2 cos2(t))dt = 2!

Hence, we should not consider these parametrisations to be equivalent: they
are not related simply by reparametrisation (in the sense defined above) as
the integral is picking up on how many times we are going round the circle.
Both integrals are however useful, for instance, in physical applications, if an
object is moving and it goes around the circle twice, then one might expect the
work done by a force to be doubled, and so the second computation is relevant,
but if we are only concerned about the geometric curve, there is no reason to go
around the curve multiple times, and so the integral along C is by convention
the first one.

As a motivating example for the notion of integral along a path, I mentioned the
notion of work of a force. This involves a vector field F⃗ describing the force, but we
know how to integrate differential forms... Luckily for us, using the inner product of
R3, ⟨, ·⟩, we can obtain a differential form from F⃗ by considering the quantity:

⟨⃗F, ·⟩.

Indeed, if e⃗x, e⃗y, e⃗z is our standard basis of R3 then, writing:

F⃗ = Fxe⃗x + Fye⃗y + Fze⃗z,

we have:
⟨⃗F, ⟩ = Fx⟨e⃗x, ·⟩+ Fy⟨e⃗y, ·⟩+ Fz⟨e⃗z, ·⟩,

but if h = hxe⃗x + hye⃗y + hze⃗z then:

⟨ex,h⟩ = hx = dx(h),
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so
⟨ex, ·⟩ = dx!

Similar observations can be made for the other quantities, so the differential form
associated with the vector field F is:

⟨⃗F, ·⟩ = Fxdx+ Fydy+ Fzdz,

introducing d⃗l = dxe⃗x + dye⃗y + dze⃗z this is sometimes written:

F⃗ · d⃗l.

Definition 2.6

The line integral of a vector field F⃗ = Fxe⃗x + Fye⃗y + Fze⃗z along a curve or path
parametrised by γ : [a,b] → R3 is the integral:∫

γ

F⃗ · d⃗l =
∫
γ

Fxdx + Fydy+ Fzdz.

Example 2.10. Consider the vector field:

F⃗(x,y, z) = −
1

(x2 + y2 + z2)
3
2
(xe⃗x + ye⃗y + ze⃗z)

and the path parametrised by γ(t) = (cos(t), sin(t), 0), t ∈ [0, 2π], then:∫
γ

F⃗ · d⃗l = −

∫
γ

xdx

(x2 + y2 + z2)
3
2
+

ydy

(x2 + y2 + z2)
3
2
+

zdz

(x2 + y2 + z2)
3
2

=

∫2π

0
(cos(t) sin(t) − sin(t) cos(t))dt = 0

⋄

Example 2.11. Let f be a scalar field and F⃗ = −→
∇f, and γ : [a,b] → R3, then:∫

γ

−→
∇f · d⃗l =

∫
γ

∂f

∂x
dx+

∂f

∂y
dy+

∂f

∂z
dz =

∫
γ

df = f(γ(b)) − f(γ(a)).

In particular, if the curve is closed then the integral vanishes. ⋄

There is another distinguished object that we can integrate along a geometric curve,
that is intrinsic to any (piecewise) simple regular C1 curve:

ds =
∥∥γ ′(t)∥∥dt = “

√
dx2 + dy2 + dz2”.

Recall that the length of the curve between γ(a) and γ(b) is:

L =

∫b
a

ds.
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We can use this object to integrate functions over the line, indeed if f : U ⊂ R3 → R
is a continuous scalar field and we consider a path parametrised by γ : [a,b] → C ,
then we can set: ∫

γ

fds =
∫b
a

f(γ(t))
∥∥γ ′(t)∥∥dt.

By the same method as for the line integral, one can check that this integral is
parametrisation independent, and does not even depend on orientation !

Example 2.12. Consider the path integral of f along the simple regular curve C
parametrised by:

γ(t) = (1 + 2t, 3 + 4t, t), t ∈ [0, 1]
of the function f(x,y, z) = x.∫

C
fds =

∫1

0
(1 + 2t)

√
4 + 16 + 1dt =

√
21
[

1
4(1 + 2t)2

]1

0
=

8
√

21
4 .

Let us test parametrisation independence by performing the change of variable: s =
1 − t:

√
21

∫1

0
(1+2t)dt =

√
21

∫0

1
(3−2s)(−ds) =

√
21

∫1

0
(3−2s)ds = −

√
21
4 (1−9) = 8

√
21

4 .

⋄

Remark 2.3. (If you are aware of the distinction between the Lebesgue and Riemann
integral). I am using here the Riemann integral, which is actually oriented,

∫b
a =

−
∫a
b as opposed to the Lebesgue integral which is not: it is only concerned with the

set [a,b]. We write when a < b,
∫
[a,b] =

∫b
a. The change of variable formula for a

Lebesgue integral automatically involves |ϕ ′| as opposed to ϕ ′ in the Riemann case.

To avoid complicating things in the Definition and Theorem statement, I have made
assumptions about the regularity of the curves and paths. These can of course be
relaxed by allowing these assumptions to only be satisfied in a piecewise manner:
i.e. that we can break our curve up into a finite number of smaller pieces where
the assumptions are satisfied. This means that the assumptions only fail at a finite
number of points and in integration theory, these points are of “measure zero” which
means the integral is insensitive to them. The definitions then are generalised by
using our definitions on each part and adding the results together. This enables us
to integrate over rectangles, or paths “with corners” which is often done in physics.

Example 2.13. Consider in a plane the square curve S with vertices (−1, 1), (1, 1),
(1,−1) and (−1,−1) represented below and oriented in the clockwise direction as
shown:
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L1

L2

L3

L4

and the differential form:
α = dx+ xdy

Then we split up the curve into four lines that we parametrise (for example) as so:
L1 : t ∈ [0, 1] 7→ (−1 + 2t, 1),
L2 : t ∈ [0, 1] 7→ (1, 1 − 2t),
L3 : t ∈ [0, 1] 7→ (1 − 2t,−1),
L4 : t ∈ [0, 1] 7→ (−1,−1 + 2t).

Then: ∫
S
α =

4∑
i=1

∫
Li

α

=

∫1

0
(2 + (−2) + (−2) + (−2))dt = −4.

⋄

Example 2.14. Check that the integral over the square of α = df (where f is a C1

scalar field), vanishes. ⋄

2.6 A very brief review of integration in Rn

Nowadays, especially with the modern development of probability theory and its im-
portance in a number of different domains and applications, it is not recommendable
to be completely unaware of the modern theory of Lebesgue integration. The pur-
pose of this section is to give you a very brief account of some of the ideas of Lebesgue
integration, that you can research further in books on Measure or Probability the-
ory.

The basic stage for Lebesgue integration is an arbitrary space X, equipped with a
distinguished collection of sets A which are referred to as: measurable. You can
think of X as being R2 and A will in this case be the collection of subsets of R2 for
which one will be able to define its area.
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The collection A of subsets is not arbitrary and satisfies a number of rules that are
designed to satisfy our intuitive idea of area or volume. Indeed, one expects to be
able to define the total area of the full space X, (even if its infinite), so we always
assume:

X ∈ A .

If (An)n∈N are a countable selection of measurable sets, then we expect their union
to be measurable i.e.

(An)n∈N ∈ A N ⇒
⋃
n∈N

An ∈ A ,

and finally, if A is measurable then the subset Ac = X\A should be measurable too,
i.e.

A ∈ A → X \A ∈ A .

These rules are summarised by saying that A is a σ-algebra.

The third and final ingredient for integration theory according to Lebesgue is the
notion of measure. This is a function:

µ : A → [0,+∞],

that can take the value +∞ and which assigns to each measurable set A ∈ A , its
size or measure. It is also assumed to have some basic intuitive properties:

µ(∅) = 0,

and, if (An)n∈N is a countable family of pairwise disjoint sets, then:

µ(
⋃
n∈N

An) =

∞∑
n=0

µ(An).

Remark 2.4. When doing probability theory, the size of the total space is always
chosen µ(X) = 1.

A key idea is to try to choose A as large as possible to include any reasonable set
whose size you want to measure, although it turns out that in general it will not
include all possible subsets of X (but those which are excluded will in general be so
fantastical that you only run into them if you try to.)

When a set A satisfies µ(A) = 0 it is said to be negligible: these sets are invisible for
all means and purposes in terms of integration theory.

When X = Rn, one of the first questions one asks is:
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Can one find A and a measure, often written, λ such that: A contains all
my usual sets, and λ generalises in a unique way the notion of volume from
n-dimensional rectangles :

λ([a1,b1]× · · · × [an,bn]) = (b1 − a1)× · · · × (bn − an),

to any of these sets?

The answer is yes for any n: A is then known as the Lebesgue σ-algebra and λ as
the Lebesgue measure.

Once you have the three ingredients, X, A and a measure µ, you can define the inte-
gral of a class of so-called measurable functions, which include (phew!) continuous
functions when X = Rn. This notion of integral is very flexible (notice that we are
always integrating over the whole space X) and is meant to directly generalise the
notion of mean. One first defines the integral of simple functions. These are func-
tions f that can be written:

f(x) =
∑
i=1

ci1Ai
(x), x ∈ X,

where Ai ∈ A , ci ∈ R and 1Ai
is called the characteristic function of the measurable

set Ai and defined by:

1Ai
(x) =

{
1 if x ∈ Ai

0 otherwise.
The integral is then defined as:∫

X

fµ(dx) =

n∑
i=1

ciµ(Ai).

Observe that by assumption: ∫
X

1Aµ(dx) = µ(A).

We convene5 that 0 × ∞ = 0. The integral of a positive function f is then defined
by: ∫

X

fµ(dx) = sup
{∫
sµ(dx), s simple positive and s ⩽ f

}
∈ [0,+∞]

We allow the value +∞. For an arbitrary (measurable) function we say that f is
integrable if: ∫

X

|f|µ(dx) < + ∞
5This is allowed because we are not taking a limit towards infinity, but the value of the measure of

a set can be exactly +∞.
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and then it turns out we can define:∫
X

f =

∫
X

f+ −

∫
X

f−.

where f+ and f− are the positive and negative parts of f = f+ − f− (which are both
defined to be positive functions).

To define an integral over a measurable subset A, we just set:∫
A

fµ(dx) =

∫
X

f1A(x)µ(dx).

If a set A is negligible: ∫
A

fµ(dx) = 0.

When X = R and µ = λ is the Lebesgue measure on R we recover the usual standard
theory, however, in order to take X = Rn with n > 1 one needs to do some work:
we need to be able to actually calculate integrals. This work involves the notion of
product measure µ⊗ ν of two measures over distinct spaces X and Y, and there are
some subtleties that we can sweep under the rug. The result boils down to what is
commonly referred to as Fubini’s theorem. It can be applied iteratively and boils
down to in practice6, the following statements (lets look at R2):

• When f is a (Lebesgue) positive measurable function, for instance, continuous
or piecewise continuous then we always have:∫
R2
f(x,y)λ(dxdy) =

∫
R

(∫
R
(f(x,y)λ(dx))

)
λ(dy) =

∫
R

(∫
R
(f(x,y)λ(dy))

)
λ(dx).

• When f is an integrable measurable function, then:∫
R2
f(x,y)λ(dxdy) =

∫
R

(∫
R
(f(x,y)λ(dx))

)
λ(dy) =

∫
R

(∫
R
(f(x,y)λ(dy))

)
λ(dx).

(The λ which indicates we are using the Lebesgue measure, will eventually disap-
pear).

When f is a (piecewise) continuous function, and D is a bounded measurable set,
then Fubini’s theorem will actually always apply, so for our purposes we are just
going to practice computing integrals and the skill of how to “set the bounds” in the
iterated integrals. Which is simply translating the multiplication by the function
1D which just “cuts off” the function outside of D.

Example 2.15. Let us consider the region D = {−x2 + 1 ⩽ y ⩽ x2 + 1, 0 ⩽ x ⩽ 3},
represented as the shaded blue region below:

6in reality these statements are a bit incorrect although they are essentially true
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5

5

10

It has an exceptional property, if one fixes x, then the set:

Dx = { y ∈ R, (x,y) ∈ D},

has a surprisingly simple description:

Dx =

{
{−1 + x2 ⩽ y ⩽ x2 + 1} if 0 ⩽ x ⩽ 3
∅ otherwise

If f is a continuous function on R2, then according to Fubini’s theorem:∫
D

fdxdy =

∫
R2
f(x,y)1D(x,y)dxdy =

∫
R

(∫
R
f(x,y)1D(x,y)dy

)
dx.

Now, if x is fixed, 1D(x,y) = 1 if and only if y ∈ Dx, so in fact:∫
D

fdxdy =

∫
R

(∫
Dx

f(x,y)dy
)
dx

But Dx = ∅ if x /∈ [0, 3] so:∫
D

fdxdy =

∫3

0

(∫1+x2

−1+x2
f(x,y)dy

)
dx.

Let us work out the bounds if we instead want to integrate with respect to x first.
For this we need to determine, Dy = { x ∈ R, (x,y) ∈ D}
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Let us first observe that if (x,y) ∈ D then, −8 ⩽ y ⩽ 10, we shall restrict to those
values of y. Now if y is fixed;

(x,y) ∈ D⇔ 0 ⩽ x ⩽ 3, 1 − x2 ⩽ y ⩽ 1 + x2,
but this means that 1 − y ⩽ x2 and y− 1 ⩽ x2 or, in other words:

x2 ⩾ |y− 1|, 0 ⩽ x ⩽ 3
Hence we conclude that:

(x,y) ∈ D,y ∈ [−8, 10] ⇔
√
|y− 1| ⩽ x ⩽ 3

and therefore: ∫
D

f(x,y)dxdy =

∫10

−8

(∫3
√

|y−1|
f(x,y)dx

)
dy.

⋄

Let us consider another example:

Example 2.16. If f : [a,b] → R is a positive (continuous) function, Fubini’s theorem
allows us to prove that the integral is equal to the area under the curve (as defined
by the Lebesgue measure) which is usually how a 1D integral is “defined”. Indeed,
the region under the curve is:

D = {x ∈ [a,b], 0 ⩽ y ⩽ f(x)}.

λ(D) =

∫
R2

1D(x,y)dxdy =

∫b
a

(∫f(x)
0

dy
)
dx =

∫b
a

f(x)dx.

⋄

Example 2.17. LetD be the triangular region T whose vertices are (0, 0), (0, 2), (2, 0)

To describe the region we can observe that, 0 ⩽ y ⩽ 2 and that for fixed y, Ty is
given by:

Ty = {x ∈ R, (x,y) ∈ T } = [0, 2 − y].
So: ∫

T

f(x,y)dx =

∫2

0

(∫2−y

0
f(x,y)dx

)
dy.

The other way round, we can observe that 0 ⩽ x ⩽ 2 and if x is fixed:
Tx = [0, 2 − x]

⋄
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Fubini’s theorem can be applied iteratively, using R3 = R×R2 = R×(R×R) enabling
us to reduce integrals over regions of R3 to integrals over R. The game is the same
except it can be harder to visualise and we need to trust our ability to write down
the conditions in equivalent ways.

Let us consider a region, V of R3 defined by:

V = {x ⩽ z ⩽ 1, 1 − x ⩽ y ⩽ 1, 0 ⩽ x ⩽ 1}.

Given the current description of this set, we can see that the easiest order of inte-
gration one can write is to integrate with respect to x last and with respect to y and
z second. In particular, if x ∈ [0, 1]:

Vx = {(y, z) ∈ R2, (x,y, z) ∈ R2} = [1 − x, 1]× [x, 1].

This is a rectangle and Fubini’s theorem shows immediately that the order of inte-
gration with respect to y and z does not matter. So we have:∫
V

f(x,y, z)dxdydz =
∫1

0

(∫1

x

(∫1

1−x

f(x,y, z)dy
)
dz

)
dx =

∫1

0

(∫1

1−x

(∫1

x

f(x,y, z)dz
)
dy

)
dx.

Suppose we wanted to integrate with respect to z first. We can see that z can take
any value between [0, 1] within the region. So let us fix z and try to find Vz. We must
have:

0 ⩽ x ⩽ z and 1 − x ⩽ y ⩽ 1,
so we can also write the order of integration:∫1

0

(∫z
0

(∫1

1−x

f(x,y, z)dy
)
dx

)
dz.

We could also try to swap the order between y and x, observing that: 1 − z ⩽ y ⩽ 1
and 1 − y ⩽ x ⩽ z so that we could write;∫1

0

(∫1

1−z

(∫z
1−y

f(x,y, z)dx
)
dy

)
dz.

Let us check that these integrals are all identical when f = 1.

•
∫1

0

(∫1
x

(∫1
1−x dy

)
dz
)
dx =

∫1
0(1 − x)xdx = 1

2 − 1
3 = 1

6

•
∫1

0

(∫1
1−x

(∫1
x dz

)
dy
)
dx = 1

6 .

•
∫1

0

(∫z
0

(∫1
1−x f(x,y, z)dy

)
dx
)
dz =

∫1
0
∫z

0 xdxdz =
∫1

0
z2
2 dz =

1
6 .

•
∫1

0

(∫1
1−z

(∫z
1−y dx

)
dy
)
dz =

∫1
0
∫1

1−z(z+ y− 1)dydz =
∫1

0
z2
2 dz =

1
6 .
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2.7 The change of variable formula
We quote without proof the higher dimensional change of variable formula:

Theorem 2.2
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A The difference between f and f(x)
There is a conceptual difference between a function f and the value of a function at
a point x which we denote by f(x). When people say things like: “let us consider the
function f(x)”, you should throw your shoes at them or/and any other object at your
immediate disposal!

Not distinguishing between these concepts can cause mountains of confusion when
doing mathematics, even if you are just trying to work out what other people mean
(especially physicists who are very economical with notation).

You can think of f as a rule that tells you, given some x, how to calculate the value
f(x). We write this f : x 7→ f(x). Here, x is some element of the domain and f(x) is
an element of the target domain.

So when we say that a matrix A determines a linear map u, we mean that given the
matrix A we can work out the rule to calculate u(X) for any X ∈ Rn, in this case the
rule (i.e. the function u), amounts to:

u = [X 7→ AX].

B A tool we’ve been missing that is required for many
proofs

Proposition B.1: Mean value theorem

et f,g : [a,b] → (E, ∥·∥E) be continuous functions on [a,b] and differentiable
on (a,b), and suppose that:

∀t ∈ (a,b),
∥∥f ′(t)∥∥

E
⩽ g ′(t),

then:
∥f(b) − f(a)∥E ⩽ g(b) − g(a).
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